
MDTF Getting Started Guide
Release 3.0 beta 2

Thomas Jackson (GFDL) Yi-Hung Kuo (UCLA)
Dani Coleman (NCAR)

Feb 11, 2021

CONTENTS

1 Getting started 1
1.1 Overview . 1
1.2 Quickstart installation instructions . 3
1.3 Framework configuration for user model data . 9

2 Site-specific information 13
2.1 GFDL-specific information . 13

3 Acknowledgements 16
3.1 Disclaimer . 16

i

CHAPTER

ONE

GETTING STARTED

1.1 Overview

Welcome! In this section we’ll describe what the Model Diagnostics Task Force (MDTF) framework is, how
it works, and how you can contribute your own diagnostic scripts.

1.1.1 Purpose

The scientific motivation and content behind the framework was described in E. D. Maloney et al. (2019):
Process-Oriented Evaluation of Climate and Weather Forecasting Models. BAMS, 100 (9), 1665–1686,
doi:10.1175/BAMS-D-18-0042.11.

Also see the section of this site devoted to documentation of individual diagnostics.

1 https://doi.org/10.1175/BAMS-D-18-0042.1

1

https://doi.org/10.1175/BAMS-D-18-0042.1

MDTF Getting Started Guide, Release 3.0 beta 2

1.1.2 Framework operation

The design goal of the MDTF framework is to provide a portable and adaptable means to run process-
oriented diagnostic scripts, abbreviated as PODs below. By “portability,” we mean the ideal of “run once,
run anywhere”: the purpose of the framework is to automate retrieval of model data from different local or
remote sources, and transform that data into a layout (field names, variable units, etc.) your script expects.
This will empower your analysis to be run by a wider range of researchers on a wider range of models.

As shown in the figure above, the MDTF framework itself performs common data management and sup-
port tasks (gray boxes) before and after the individual POD scripts are run. The PODs (colored boxes) are
developed by different research groups and run independently of one another. Each POD takes as input

1. requested variables from the model run, along with

2. any required observational or supporting data, performs an analysis, and produces

3. a set of figures which are presented to the user in a series of .html files.

We do not include or require a mechanism for publishing these webpages on the internet; html is merely used
as a convenient way to present a multimedia report to the user.

1.1.3 Getting started for users

The rest of the documentation in this section describes next steps for end users of the framework:

• We provide instructions on how to download and install (page 3) the framework and run it on sample
model data.

• We describe the most common configuration options (page 9) for running the framework on your own
model data. Also see the full list of command-line options.

• If you encounter a bug, check the GitHub issue tracker2.
2 https://github.com/NOAA-GFDL/MDTF-diagnostics/issues

2

https://github.com/NOAA-GFDL/MDTF-diagnostics/issues

MDTF Getting Started Guide, Release 3.0 beta 2

1.1.4 Getting started for POD developers

Information for researchers wishing to contribute a POD to the framework is provided in the Developer
section; consult the quickstart guide for an overview and the checklist of items needed for submitting your
POD.

The framework is designed to require minimal changes to existing analysis scripts. We recommend that
developers of new PODs start independently of the framework and adapt it for the framework’s use once it’s
fully debugged. As summarized in the figure above, the changes needed to convert an existing analysis script
for use in the framework are:

• Provide a settings file which tells the framework what it needs to do: what languages and libraries your
code need to run, and what model data your code takes as input.

• Adapt your code to load data files from locations set in unix shell environment variables (we use this
as a language-independent way for the framework to communicate information to the POD).

• Provide a template web page which links to, and briefly describes, the plots generated by the script.

1.2 Quickstart installation instructions

This section provides basic directions for downloading, installing and running a test of theModel Diagnostics
Task Force (MDTF) Process-Oriented Diagnostics package using sample model data. The current MDTF
package has been tested on UNIX/LINUX, Mac OS, and Windows Subsystem for Linux.

Throughout this document, % indicates the UNIX/LINUX command line prompt and is followed by com-
mands to be executed in a terminal in fixed-width font, and $ indicates strings to be substituted, e.g.,
the string $CODE_ROOT below should be substituted by the actual path to the MDTF-diagnostics directory.
While the package contains quite a few scripts, the most relevant for present purposes are:

• conda_env_setup.sh: automated script for installing necessary Conda environments.

• default_tests.jsonc: configuration file for running the framework.

1.2.1 Summary of steps for running the package

Youwill need to download a) the source code, b) digested observational data, and c) two sets of sample model
data (Section 1.2.2). Afterwards, we describe how to install necessary Conda environments and languages
(Section 1.2.3) and run the framework on the default test case (Section 1.2.5 and Section 1.2.5).

Summary of steps for installing the framework

You will need to download the source code, digested observational data, and sample model data (Section
1.2.2). Afterwards, we describe how to install software dependencies using the conda3 package manager
(Section 1.2.3, Section 1.2.5) and run the framework on sample model data (Section 1.2.5 and Section 1.2.5).

3 https://docs.conda.io/en/latest/

3

https://docs.conda.io/en/latest/

MDTF Getting Started Guide, Release 3.0 beta 2

1.2.2 Obtaining the code

The official repo for the MDTF code is hosted at the GFDL GitHub account4. We recommend that end users
download and test the latest official release5.

To install the MDTF framework, create a directory named mdtf and unzip the code downloaded from the
release page6 there. This will create a directory titled MDTF-diagnostics-3.0-beta.2 containing the files
listed on the GitHub page. Below we refer to this MDTF-diagnostics directory as $CODE_ROOT. It contains
the following subdirectories:

• diagnostics/: directory containing source code and documentation of individual PODs.

• doc/: directory containing documentation (a local mirror of the documentation site).

• src/: source code of the framework itself.

• tests/: unit tests for the framework.

For advanced users interested in keeping more up-to-date on project development and contributing feedback,
the main branch contains features that haven’t yet been incorporated into an official release, which are less
stable or thoroughly tested.

For POD developers, the develop branch is the “beta test” version of the framework. POD developers should
begin by locally cloning the repo and checking out this branch, as described in ref-dev-git-intro.

1.2.3 Obtaining supporting data

Supporting observational data and sample model data are available via anonymous FTP at ftp://ftp.cgd.ucar.
edu/archive/mdtf. The observational data is required for the PODs’ operation, while the sample model data is
provided for default test/demonstration purposes. The files most relevant for package installation and default
tests are:

• Digested observational data (159 Mb): MDTF_v2.1.a.obs_data.tar7.

• NCAR-CESM-CAM sample data (12.3 Gb): model.QBOi.EXP1.AMIP.001.tar8.

• NOAA-GFDL-CM4 sample data (4.8 Gb): model.GFDL.CM4.c96L32.am4g10r8.tar9.

Note that the above paths are symlinks to the most recent versions of the data and will be reported as zero
bytes in an FTP client.

Download these three files and extract the contents in the following hierarchy under the mdtf directory:

mdtf
��� MDTF-diagnostics
��� inputdata

��� model (= $MODEL_DATA_ROOT)
(continues on next page)

4 https://github.com/NOAA-GFDL/MDTF-diagnostics
5 https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.1
6 https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.2
7 ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.1.a.obs_data.tar
8 ftp://ftp.cgd.ucar.edu/archive/mdtf/model.QBOi.EXP1.AMIP.001.tar
9 ftp://ftp.cgd.ucar.edu/archive/mdtf/model.GFDL.CM4.c96L32.am4g10r8.tar

4

https://github.com/NOAA-GFDL/MDTF-diagnostics
https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.1
https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.2
ftp://ftp.cgd.ucar.edu/archive/mdtf
ftp://ftp.cgd.ucar.edu/archive/mdtf
ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.1.a.obs_data.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/model.QBOi.EXP1.AMIP.001.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/model.GFDL.CM4.c96L32.am4g10r8.tar

MDTF Getting Started Guide, Release 3.0 beta 2

(continued from previous page)
� ��� GFDL.CM4.c96L32.am4g10r8
� � ��� day
� � ��� GFDL.CM4.c96L32.am4g10r8.precip.day.nc
� � ��� (... other .nc files)
� ��� QBOi.EXP1.AMIP.001
� ��� 1hr
� � ��� QBOi.EXP1.AMIP.001.PRECT.1hr.nc
� � ��� (... other .nc files)
� ��� 3hr
� � ��� QBOi.EXP1.AMIP.001.PRECT.3hr.nc
� ��� day
� � ��� QBOi.EXP1.AMIP.001.FLUT.day.nc
� � ��� (... other .nc files)
� ��� mon
� ��� QBOi.EXP1.AMIP.001.PS.mon.nc
� ��� (... other .nc files)
��� obs_data (= $OBS_DATA_ROOT)

��� (... supporting data for individual PODs)

The default test case uses the QBOi.EXP1.AMIP.001 sample. The GFDL.CM4.c96L32.am4g10r8 sam-
ple is only for testing the MJO Propagation and Amplitude POD. Note that mdtf now contains both
MDTF-diagnostics and inputdata directories.

You can put the observational data and model output in different locations (e.g., for space reasons) by chang-
ing the values of OBS_DATA_ROOT and MODEL_DATA_ROOT as described below in Section 1.2.5.

Install the conda packagemanager, if needed

For users unfamiliar with Conda, :numref:`ref-conda-install` can be skipped if Conda has been installed, but
:numref:`ref-conda-env-install` CANNOT be skipped regardless.

The MDTF framework code is written in Python 2.7, but supports running PODs written in a variety of
scripting languages and combinations of libraries. We use Conda10, a free, open-source package manager to
install and manage these dependencies. Conda is one component of the Miniconda11 and Anaconda12 python
distribution, so having Miniconda/Anaconda is sufficient but not necessary.

For maximum portability and ease of installation, we recommend that all users manage dependencies through
Conda using the provided script src/conda/conda_env_setup.sh, even if they have independent instal-
lations of the required languages. A complete installation of all dependencies will take roughly 5 Gb, less
if you’ve already installed some of the dependencies through Conda. The location of this installation can be
changed with the $CONDA_ENV_DIR setting described below.

If these space requirements are prohibitive, we provide an alternate method of operation which makes no
use of conda and relies on the user to install external dependencies, at the expense of portability. This is
documented in a separate section.

10 https://docs.conda.io/en/latest/
11 https://docs.conda.io/en/latest/miniconda.html
12 https://www.anaconda.com/

5

https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/

MDTF Getting Started Guide, Release 3.0 beta 2

1.2.4 Conda installation

Here we are checking that the Conda command is available on your system. We recommend doing this via
Miniconda or Anaconda installation. You can proceed directly to section 2.2 if Conda is already installed.

• To determine if conda is installed, run % conda --version as the user who will be using the frame-
work. The framework has been tested against versions of conda >= 4.7.5.

• If the command doesn’t return anything, i.e., you do not have a pre-existing Conda on your system, we
recommend using the Miniconda installer available here13. Any version of Miniconda/Anaconda (2 or
3) released after June 2019 will work. Installation instructions here14.

• Toward the end of the installation process, enter “yes” at “Do you wish the installer to initialize Mini-
conda2 by running conda init?” (or similar) prompt. This will allow the installer to add the Conda
path to the user’s shell login script (e.g., ~/.bashrc or ~/.cshrc).

• Restart the terminal to reload the updated shell login script.

The framework’s environments will co-exist with an existing Miniconda/Anaconda installation. Do not re-
install Miniconda/Anaconda if it’s already installed for the user who will be running the framework: the
installer will break the existing installation (if it’s not managed with, e.g., environment modules.)

1.2.5 Framework-specific environment installation

Here we set up the necessary environments needed for running the framework and individual PODs via the
provided script. These are sometimes referred to as “Conda environments” conventionally.

After making sure that Conda is available, run % conda info --base as the user who will be using the
framework to determine the location of your Conda installation. This pathwill be referred to as $CONDA_ROOT
below.

• If this path points to /usr/ or a subdirectory therein, we recomnend having a separate Mini-
conda/Anaconda installation of your own following Conda installation (page 6).

Next, run

% cd $CODE_ROOT
% ./src/conda/conda_env_setup.sh --all --conda_root $CONDA_ROOT --env_dir $CONDA_ENV_DIR

to install all necessary environments (and create an executable; Location of the MDTF executable (page 8)),
which takes ~10 min. The names of all framework-created environments begin with “_MDTF”, so as not to
conflict with any other environments.

• Substitute the actual paths for $CODE_ROOT, $CONDA_ROOT, and $CONDA_ENV_DIR.

• The --env_dir flag allows you to put the program files in a designated location $CONDA_ENV_DIR
(for space reasons, or if you don’t have write access). You can omit this flag, and the environments
will be installed within $CONDA_ROOT/envs/ by default.

13 https://docs.conda.io/en/latest/miniconda.html
14 https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

6

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

MDTF Getting Started Guide, Release 3.0 beta 2

• The --all flag makes the script install all environments prescribed by the YAML (.yml) files un-
der src/conda/ (one YAML for one environment). You can install the environments selectively by
using the --env flag instead. For instance, % ./src/conda/conda_env_setup.sh --env base
--conda_root $CONDA_ROOT --env_dir $CONDA_ENV_DIR will install the “_MDTF_base” en-
vironment prescribed by env_base.yml, and so on. With --env, the current script can install one
environment at a time. Repeat the command for multiple environments.

• Note that _MDTF_base is mandatory for the framework’s operation, and the other environments are
optional, see Framework interaction with Conda environments (page 8).

After installing the framework-specific Conda environments, you shouldn’t manually alter them (i.e., never
run conda update on them). To update the environments after updating the framework code, re-run the
above commands. These environments can be uninstalled by simply deleting “_MDTF” directories under
$CONDA_ENV_DIR (or $CONDA_ROOT/envs/ for default setting).

Configure framework paths

The MDTF framework supports setting configuration options in a file as well as on the command line. An
example of the configuration file format is provided at src/default_tests.jsonc15. We recommend configuring
the following settings by editing a copy of this file:

src/default_tests.jsonc is a template/example for configuration options that will be passed to the ex-
ecutable as an input. Open it in an editor (we recommend working on a copy). The following adjustments
are necessary before running the framework:

• If you’ve saved the supporting data in the directory structure described in Obtaining supporting
data (page 4), the default values for OBS_DATA_ROOT and MODEL_DATA_ROOT pointing to mdtf/
inputdata/obs_data/ and mdtf/inputdata/model/ will be correct. If you put the data in a
different location, these values should be changed accordingly.

• OUTPUT_DIR should be set to the location you want the output files to be written to (default: mdtf/
wkdir/; will be created by the framework). The output of each run of the framework will be saved in
a different subdirectory in this location.

• conda_root should be set to the value of $CONDA_ROOT used above in Framework-specific environ-
ment installation (page 6).

• If you specified a custom environment location with $CONDA_ENV_DIR, set conda_env_root to that
value; otherwise, leave it blank.

We recommend using absolute paths in default_tests.jsonc, but relative paths are also allowed and
should be relative to $CODE_ROOT.

15 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

7

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 2

Run theMDTF framework on sample data

1.2.6 Location of theMDTF executable

The setup script (Framework-specific environment installation (page 6)) will have created an executable at
$CODE_ROOT/mdtfwhich sets the correct Conda environments before running the framework and individual
PODs. To test the installation, % $CODE_ROOT/mdtf --help will print help text on the command-line op-
tions. Note that, if your current working directory is $CODE_ROOT, you will need to run % ./mdtf --help.

For interested users, the mdtf executable is also a script, which calls src/conda/conda_init.sh and
src/mdtf.py.

1.2.7 Run the framework on sample data

If you’ve installed the Conda environments using the --all flag (Framework-specific environment installa-
tion (page 6)), you can now run the framework on the CESM sample model data:

% cd $CODE_ROOT
% ./mdtf -f src/default_tests.jsonc

Run time may be 10-20 minutes, depending on your system.

• If you edited/renamed default_tests.jsonc, pass that file instead.

• The output files for this test case will be written to $OUTPUT_DIR/QBOi.EXP1.AMIP.
001_1977_1981. When the framework is finished, open $OUTPUT_DIR/QBOi.EXP1.AMIP.
001_1977_1981/index.html in a web browser to view the output report.

• The above command will execute PODs included in pod_list of default_tests.jsonc. Skip-
ping/adding certain PODs by uncommenting/commenting out the POD names (i.e., deleting/adding
//). Note that entries in the list must be separated by ,. Check for missing or surplus , if you en-
counter an error (e.g., “ValueError: No closing quotation”).

• Currently the framework only analyzes data from one model run at a time. To run the MJO_prop_amp
POD on the GFDL.CM4.c96L32.am4g10r8 sample data, delete or comment out the section for
QBOi.EXP1.AMIP.001 in “caselist” of default_tests.jsonc, and uncomment the section for
GFDL.CM4.c96L32.am4g10r8.

1.2.8 Framework interaction with Conda environments

As just described in Run the framework on sample data (page 8), when you run the mdtf executable, among
other things, it reads pod_list in the configuration file and executes POD codes accordingly. For a POD
included in the list (referred to as $POD_NAME):

1. The framework will first try to determine whether there is a Conda environment named
MDTF$POD_NAME under $CONDA_ENV_DIR. If yes, the framework will switch to this environment
and run the POD.

8

MDTF Getting Started Guide, Release 3.0 beta 2

2. If not, the framework will then look into the POD’s settings.jsonc file in $CODE_ROOT/
diagnostics/$POD_NAME. runtime_requirements in the settings file specifies the programming
language(s) adopted by the POD:

a). If purely Python, the framework will switch to _MDTF_python_base and run the POD.

b). If NCL is used, then _MDTF_NCL_base.

If you choose to selectively install Conda environments using the --env flag (Framework-specific environ-
ment installation (page 6)), remember to install all the environments needed for the PODs you’re interested
in, and that _MDTF_base is mandatory for the framework’s operation.

• For instance, the minimal installation for running the EOF_500hPa and
convective_transition_diag PODs requres _MDTF_base (mandatory), _MDTF_NCL_base
(because of b), and _MDTF_convective_transition_diag (because of 1). These can be installed
by passing base, NCL_base, and convective_transition_diag to the --env flag one at a time
(Framework-specific environment installation (page 6)).

• The framework defaults to running all available PODs, which is overridden by the pod_list option in
the src/default_tests.jsonc configuration file. Individual PODs can be specified as a comma-
delimited list of POD names.

Consult the next section (page 9) for how to run the framework on your own data and configure general
settings.

1.3 Framework configuration for usermodel data

In this section we describe how to run the framework with your own model data, and more configuration
options than the test case described in Quickstart installation instructions (page 3).

The complete set of configuration options is described in ref_cli, or by running % ./mdtf --help. All
options can be specified as a command-line flag (e.g., --OUTPUT_DIR) or as a JSON configuration input file
of the form provided in src/default_tests.jsonc16. We recommend using this file as a template, making copies
and customizing it as needed.

Options given on the command line always take precedence over the input file. This is so you can store
options that don’t frequently change in the file (e.g., the input/output data paths) and use command-line flags
to set only those options you want to change from run to run (e.g., the analysis period start and end years).
In all cases, the complete set of option values used in each run of the framework will be included in the log
file as part of the output, for reproducibility and provenance.

Summary of steps for running the framework on user data

1. Save or link model data files following the framework’s filename convention.

2. Select the variable name convention used by the model.

3. Edit the configuration input file accordingly, then

4. Run the framework.
16 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/default_tests.jsonc

9

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 2

1.3.1 Adding yourmodel data

Currently the framework is only able to run on model data in the form of NetCDF files on a locally mounted
disk following a specific directory hierarchy and filename convention, with one variable per file. We hope to
offer more flexibility in this area in the near future.

The directory/filename convention we use is

$MODEL_DATA_ROOT/$CASENAME/$frequency/$CASENAME.$variable.$frequency.nc,

where

• $CASENAME is any string used to identify the model run (experiment) that generated the data,

• $frequency is the frequency at which the data is sampled: one of 1hr, 3hr, 6hr, day, mon or year.

• $variable is the name of the variable in your model’s convention.

As an example, here’s how the sample model data is organized:

inputdata
��� model (= $MODEL_DATA_ROOT)
� ��� GFDL.CM4.c96L32.am4g10r8
� � ��� day
� � ��� GFDL.CM4.c96L32.am4g10r8.precip.day.nc
� � ��� (... other .nc files)
� ��� QBOi.EXP1.AMIP.001
� ��� 1hr
� � ��� QBOi.EXP1.AMIP.001.PRECT.1hr.nc
� � ��� (... other .nc files)
� ��� 3hr
� � ��� QBOi.EXP1.AMIP.001.PRECT.3hr.nc
� ��� day
� � ��� QBOi.EXP1.AMIP.001.FLUT.day.nc
� � ��� (... other .nc files)
� ��� mon
� ��� QBOi.EXP1.AMIP.001.PS.mon.nc
� ��� (... other .nc files)
��� obs_data (= $OBS_DATA_ROOT)

��� (... supporting data for individual PODs)

If your model data is available on a locally mounted disk, we recommend creating symlinks17 that have the
needed filenames and point to the data, rather than making copies of the files. For example,

% mkdir -p inputdata/model/my_new_experiment/day
% ln -s $path_to_file/pr_day_GFDL-ESM4_historical_r1i1p1f1_gr1_20100101-20141231.nc␣

↪inputdata/model/my_experiment/day/my_new_experiment.pr.day.nc

will create a link to the file in the first argument that can be accessed normally:

inputdata
��� model (= $MODEL_DATA_ROOT)

(continues on next page)

17 https://en.wikipedia.org/wiki/Symbolic_link

10

https://en.wikipedia.org/wiki/Symbolic_link

MDTF Getting Started Guide, Release 3.0 beta 2

(continued from previous page)
� ��� GFDL.CM4.c96L32.am4g10r8
� ��� QBOi.EXP1.AMIP.001
� ��� my_new_experiment
� ��� day
� ��� my_new_experiment.pr.day.nc

1.3.2 Select themodel’s variable name convention

The framework requires specifying a convention for variable names used in the model data. Currently rec-
ognized conventions are

• CMIP, for CF-compliant output produced as part of CMIP6;

• CESM, for the NCAR community earth system model18;

• AM4, for the NOAA-GFDL atmosphere model19;

• SPEAR, for the NOAA-GFDL seasonal model20.

We hope to offer support for the variable naming conventions of a wider range of models in the future. For
the time being, please process output of models not on this list with CMOR21 to make them CF-compliant.

Alternatively, the framework will load any lookup tables of the form src/fieldlist_$convention.
jsonc and use them for variable name conversion. Users can add new files in this format to specify new
conventions. For example, in src/fieldlist_CESM.jsonc the line "pr_var" : "PRECT"means that the
CESM name for the precipitation rate is PRECT (case sensitive). In addition, "pr_conversion_factor"
: 1000 specifies the conversion factor to CF standard units for this variable.

1.3.3 Running the code on your data

After adding your model data to the directory hierarchy as described above, you can run the framework on
that data using the following options. These can either be set in the caselist section of the configuration
input file (see src/default_tests.jsonc22 for an example/template), or individually as command-line flags (e.g.,
--CASENAME my_new_experiment). Required settings are:

• CASENAME should be the same string used to label your model run.

• convention describes the variable naming convention your model uses, determined in the previous
section.

• FIRSTYR and LASTYR specify the analysis period.

• model and experiment are recorded if given, but not currently used.
18 http://www.cesm.ucar.edu/
19 https://www.gfdl.noaa.gov/am4/
20 https://www.gfdl.noaa.gov/research_highlight/spear-the-next-generation-gfdl-modeling-system-for-seasonal-to-multidecadal-prediction-and-projection/
21 https://cmor.llnl.gov/
22 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/default_tests.jsonc

11

http://www.cesm.ucar.edu/
https://www.gfdl.noaa.gov/am4/
https://www.gfdl.noaa.gov/research_highlight/spear-the-next-generation-gfdl-modeling-system-for-seasonal-to-multidecadal-prediction-and-projection/
https://cmor.llnl.gov/
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 2

When the framework is run, it determines whether the data each POD needs to run is present in the model
data being provided. Specifically, the model must provide all variables needed by a POD at the required
frequency. Consult the documentation for a POD to determine the data it requires.

If the framework can’t find data requested by a POD, an error message will be logged in place of that POD’s
output that should help you diagnose the problem. We hope to add the ability to transform data (eg, to average
daily data to monthly frequency) in order to simplify this process.

1.3.4 Other framework settings

The paths to input and output data (described in Configure framework paths (page 7)) only need to bemodified
if the corresponding data is moved, or if you’d like to send output to a new location. Note that the framework
doesn’t retain default values for paths, so if you don’t specify a configuration file, all required paths will need
to be given explicitly on the command line.

Other relevant flags controlling the framework’s output are:

• save_ps: set to true to retain the vector .eps figures generated by PODs, in addition to the bitmap
images linked to from the webpage.

• save_nc: set to true to retain netcdf files of any data output at intermediate steps by PODs for further
analysis.

• make_variab_tar: set to true to save the entire output directory as a .tar file, for archival or file
transfer purposes.

• overwrite: set to true to overwrite previous framework output in $OUTPUT_DIR. By default, output
with the same CASENAME and date range is assigned a unique name to ensure preexisting results are
never overwritten.

These can be set as command-line flags each time the framework is run (e.g.,. --save_ps), or as true/false
values in the input file ("save_ps": true). Note that true and false in JSON must be written all lower-
case, with no quotes.

1.3.5 Modifying POD settings

Individual PODsmay provide user-configurable options in the "pod_env_vars" section of their settings.
jsonc file, which is located in each POD’s source code directory under /diagnostics. These only need to
be changed in rare or specific cases. Consult the POD’s documentation for details.

12

CHAPTER

TWO

SITE-SPECIFIC INFORMATION

2.1 GFDL-specific information

This page contains information specific to the site installation at the Geophysical Fluid Dynamics Labora-
tory23.

2.1.1 Site installation

TheDET teammaintains a site-wide installation of the framework and all supporting data at /home/mdteam/
DET/analysis/mdtf/MDTF-diagnostics. This is kept up-to-date and is accessible from both worksta-
tions and PPAN. Please contact us if your use case can’t be accommodated by this installation.

2.1.2 FRE-centric modes of operation

In addition to the standard, interactive method of running MDTF diagnostics as described in the rest of the
documentation, the site installation provides alternative ways to run the diagnostics within GFDL’s existing
workflow.

1. Within FRE XMLs. This is done by calling the mdtf_gfdl.csh24 wrapper script from an <analysis>
tag in the XML. Currently, FRE requires that each analysis script be associated with a single model
<component>. This poses difficulties for diagnostics which use data generated by multiple compo-
nents. We provide two ways to address this issue:

A. If it’s known ahead of time that a given <component> will dominate the run time and finish
last, one can call mdtf_gfdl.csh from an <analysis> tag in that component only. In this
case, the framework will search all data present in the /pp/ output directory when it’s called. The
<component> being used doesn’t need to generate data analyzed by the diagnostics; in this case
it’s only used to schedule the diagnostics’ execution.

B. If one doesn’t know which <component> will finish last, a more robust solution is to call
mdtf_gfdl.csh --component_only from each <component> generating data to be analyzed.
When the --component_only flag is set, every time the framework is called it will only run the
diagnostics for which all the input data is available and which haven’t run already (which haven’t
written their output to $OUTPUT_DIR.

23 https://www.gfdl.noaa.gov/
24 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh

13

https://www.gfdl.noaa.gov/
https://www.gfdl.noaa.gov/
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh

MDTF Getting Started Guide, Release 3.0 beta 2

2. As a batch job on PPAN, managed via slurm. This is handled via the mdtf_gfdl_interactive.csh25
wrapper script.

3. Called from an interactive shell on PPAN or workstations.

2.1.3 Data retrieval options

The framework is currently configured to search data from two types of directory hierarchies. The framework
will determine what’s intended based on its input, but this choice can be overridden by passing the following
options with the --data_manager flag:

• The /pp/ hierarchy used by FRE (--data_manager Gfdl_PP). In this case CASE_ROOT_DIR should
be set to the root of the directory hierarchy (ie, ending in /pp).

• The CMIP6 DRS for published data on the Unified Data Archive (--data_manager
Gfdl_UDA_CMIP6). In this case CASE_ROOT_DIR should not be set, but the --model and
--experiment settings should be populated.

• The CMIP6 DRS for unpublished data on /data_cmip6. This option must be requested explicitly
with --data_manager Gfdl_data_cmip6. In this case CASE_ROOT_DIR should not be set, but the
--model and --experiment settings should be populated.

2.1.4 GFDL-specific options

In addition to the framework’s normal command-line options, the following site-specific options are recog-
nized:

• --GFDL-PPAN-TEMP, --GFDL_PPAN_TEMP <DIR>: If running on the GFDL PPAN cluster, set the
$MDTF_GFDL_TMPDIR environment variable to this location and create temp files here. Note: must be
accessible via gcp. Defaults to $TMPDIR.

• --GFDL-WS-TEMP, --GFDL_WS_TEMP <DIR>: If running on a GFDL workstation, set the
$MDTF_GFDL_TMPDIR environment variable to this location and create temp files here. The directory
will be created if it doesn’t exist. Note: must be accessible via gcp. Defaults to /net2/$USER/tmp.

• --frepp: Normally this is set by the mdtf_gfdl.csh26 wrapper script, and not directly by the user. Set
flag to run framework in “online” mode (1a. or 1b. above), processing data as part of the FRE pipeline.

• --ignore-component, --ignore_component: Normally this is set by the mdtf_gfdl.csh27 wrap-
per script, and not directly by the user. If set, this flag tells the framework to search the entire /pp/
directory for model data (1a. above); default is to restrict to model component passed by FRE. Ignored
if --frepp is not set.

25 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl_interactive.csh
26 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh
27 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh

14

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl_interactive.csh
ref_cli.html
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/feature/gfdl-data/src/mdtf_gfdl.csh

MDTF Getting Started Guide, Release 3.0 beta 2

2.1.5 GFDL-specific defaults

The following paths are set to more useful default values:

• --OBS-DATA-REMOTE, --OBS_DATA_REMOTE <DIR>: Site-specific installation of observational
data used by individual PODs at /home/Oar.Gfdl.Mdteam/DET/analysis/mdtf/obs_data. If
running on PPAN, this data will be GCP’ed to the current node.

• --OBS-DATA-ROOT, --OBS_DATA_ROOT <DIR>: Local directory for observational data.
Defaults to $MDTF_GFDL_TMPDIR/inputdata/obs_data, where the environment variable
$MDTF_GFDL_TMPDIR is defined as described above.

• --MODEL-DATA-ROOT, --MODEL_DATA_ROOT <DIR>: Local directory for model data. Defaults to
$MDTF_GFDL_TMPDIR/inputdata/model, where the environment variable $MDTF_GFDL_TMPDIR is
defined as described above.

• --WORKING-DIR, --WORKING_DIR <DIR>: Working directory. Defaults to $MDTF_GFDL_TMPDIR/
wkdir, where the environment variable $MDTF_GFDL_TMPDIR is defined as described above.

• --OUTPUT-DIR, --OUTPUT_DIR, -o <DIR>: Destination for output files. Defaults to $HOME/
mdtf_out, which will be created if it doesn’t exist.

15

CHAPTER

THREE

ACKNOWLEDGEMENTS

Development of this code framework for process-oriented diagnostics was supported by the National Oceanic
and Atmospheric Administration28 (NOAA) Climate Program Office Modeling, Analysis, Predictions and
Projections29 (MAPP) Program (grant # NA18OAR4310280). Additional support was provided by Univer-
sity of California Los Angeles30, the Geophysical Fluid Dynamics Laboratory31, the National Center for
Atmospheric Research32, Colorado State University33, Lawrence Livermore National Laboratory34 and the
US Department of Energy35.

Many of the process-oriented diagnosticsmodules (PODs)were contributed bymembers of theNOAAModel
Diagnostics Task Force36 under MAPP support. Statements, findings or recommendations in these docu-
ments do not necessarily reflect the views of NOAA or the US Department of Commerce.

3.1 Disclaimer

This repository is a scientific product and is not an official communication of the National Oceanic and At-
mospheric Administration, or the United States Department of Commerce. All NOAA GitHub project code
is provided on an ‘as is’ basis and the user assumes responsibility for its use. Any claims against the De-
partment of Commerce or Department of Commerce bureaus stemming from the use of this GitHub project
will be governed by all applicable Federal law. Any reference to specific commercial products, processes,
or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their en-
dorsement, recommendation or favoring by the Department of Commerce. The Department of Commerce
seal and logo, or the seal and logo of a DOC bureau, shall not be used in any manner to imply endorsement
of any commercial product or activity by DOC or the United States Government.

28 https://www.noaa.gov/
29 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
30 https://www.ucla.edu/
31 https://www.gfdl.noaa.gov/
32 https://ncar.ucar.edu/
33 https://www.colostate.edu/
34 https://www.llnl.gov/
35 https://www.energy.gov/
36 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/

Model-Diagnostics-Task-Force

16

https://www.noaa.gov/
https://www.noaa.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://www.ucla.edu/
https://www.ucla.edu/
https://www.gfdl.noaa.gov/
https://ncar.ucar.edu/
https://ncar.ucar.edu/
https://www.colostate.edu/
https://www.llnl.gov/
https://www.energy.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force

	Getting started
	Overview
	Quickstart installation instructions
	Framework configuration for user model data

	Site-specific information
	GFDL-specific information

	Acknowledgements
	Disclaimer

