Land Surface/ ol
Atmosphere 4 Atlantic
Coupling Meridional
Diurnal Cycle N OVt taig
of Circulation

Precipitation 3D Structure

4 Extratropical
Variance “

MJO Teleconnections 5 = Cyclones,

Fronts, and
MJO Spectra Storm Tracks ﬁ
and ;
Amplitude Tropical
Cyclone
Structure

Mo
SLJ& tra Wavenumber-

and Frequency ENSO Moist

Static Energy

i Spect
Phasing pectra Budget

Warm Rain
Microphysics "l‘ !
Convective -~

. NMO“MAME P Transition

. Anolyis,
wcichions. ond Projections

MDTF Getting Started Guide
Release 3.0 beta 3

Thomas Jackson (GFDL) Yi-Hung Kuo (UCLA)
Dani Coleman (NCAR)

Mar 25, 2021

CONTENTS

1 Getting started 1
LI OVerview o e e e 1
1.2 Installation instructions L e e e 3
1.3 Running the packageonyourdata 10
2 Site-specific documentation 15
2.1 Customizing your installation with the ‘local’ site 15
2.2 GFDL-specific information L e 16
3 Acknowledgements 21
3.1 Disclaimer e 21

CHAPTER
ONE

GETTING STARTED

1.1 Overview

Welcome! In this section we’ll describe what the Model Diagnostics Task Force (MDTF) framework is, how
it works, and how you can contribute your own diagnostic scripts.

1.1.1 Purpose

The scientific motivation and content behind the framework was described in E. D. Maloney et al. (2019):
Process-Oriented Evaluation of Climate and Weather Forecasting Models. BAMS, 100 (9), 1665-1686,
doi:10.1175/BAMS-D-18-0042.1".

Also see the section of this site devoted to documentation of individual diagnostics.

! https://doi.org/10.1175/BAMS-D-18-0042.1

https://doi.org/10.1175/BAMS-D-18-0042.1

MDTF Getting Started Guide, Release 3.0 beta 3

1.1.2 Framework operation

The design goal of the MDTF framework is to provide a portable and adaptable means to run process-
oriented diagnostic scripts, abbreviated as PODs below. By “portability,” we mean the ideal of “run once,
run anywhere”: the purpose of the framework is to automate retrieval of model data from different local or
remote sources, and transform that data into a layout (field names, variable units, etc.) your script expects.
This will empower your analysis to be run by a wider range of researchers on a wider range of models.

" Framework passes
model & runtime info
to POD through

POD tells

&environment variables
i framework its T
requirements in Output: files for
Settings file = results webpage
‘ . POD’s code : =
| . :) runs; \ oy onom
Determine Determine Verify that \\. produces plots Collect | & D s e MEITE)
Input: and fetch \ ' configuration each PODs’ 3 output, \
details of sub;el of / at n:mtlme requirements (other PODs also aresin | | MDTF Varlabliity Diagnostics
model required / environment are met; f.f run in parallel) webpage,
model data | (Iibraries, etc) run PODs & clean up | Convective Transition Statistics c96L32_am4gs_fullsero
run ! s / Basic Statistics plot
/ / ! = Collapsed Statistics plot
" I Critical CWV plot

|—'—l

|| =framework code
1 = contributed POD (your responsibility)

As shown in the figure above, the MDTF framework itself performs common data management and sup-
port tasks (gray boxes) before and after the individual POD scripts are run. The PODs (colored boxes) are
developed by different research groups and run independently of one another. Each POD takes as input

1. requested variables from the model run, along with
2. any required observational or supporting data, performs an analysis, and produces
3. aset of figures which are presented to the user in a series of .html files.

We do not include or require a mechanism for publishing these webpages on the internet; html is merely used
as a convenient way to present a multimedia report to the user.

1.1.3 Getting started for users

The rest of the documentation in this section describes next steps for end users of the framework:

* We provide instructions on how to download and install (page 3) the framework and run it on sample
model data.

* We describe the most common configuration options (page 10) for running the framework on your own
model data. Also see the full list of command-line options.

« If you encounter a bug, check the GitHub issue tracker?.

2 https://github.com/NOAA-GFDL/MDTF-diagnostics/issues

https://github.com/NOAA-GFDL/MDTF-diagnostics/issues

MDTF Getting Started Guide, Release 3.0 beta 3

1.1.4 Getting started for POD developers

Information for researchers wishing to contribute a POD to the framework is provided in the Developer
section; consult the quickstart guide for an overview and the checklist of items needed for submitting your
POD.

The framework is designed to require minimal changes to existing analysis scripts. We recommend that
developers of new PODs start independently of the framework and adapt it for the framework’s use once it’s
fully debugged. As summarized in the figure above, the changes needed to convert an existing analysis script
for use in the framework are:

* Provide a settings file which tells the framework what it needs to do: what languages and libraries your
code need to run, and what model data your code takes as input.

* Adapt your code to load data files from locations set in unix shell environment variables (we use this
as a language-independent way for the framework to communicate information to the POD).

* Provide a template web page which links to, and briefly describes, the plots generated by the script.

1.2 Installation instructions

This section provides basic directions for downloading, installing and running a test of the Model Diagnostics
Task Force (MDTF) package using sample model data. The package has been tested on Linux, Mac OS, and
the Windows Subsystem for Linux.

You will need to download the source code, digested observational data, and sample model data (Section
1.2.1). Afterwards, we describe how to install software dependencies using the conda® package manager
(Section 1.2.3) and run the framework on sample model data (Section 1.2.4 and Section 1.2.5).

Throughout this document, % indicates the shell prompt and is followed by commands to be executed in a
terminal in fixed-width font. Variable values are denoted by angle brackets, e.g. <HOMES> is the path
to your home directory returned by running %, echo $HOME.

1.2.1 Obtaining the code

The official repo for the package’s code is hosted at the NOAA-GFDL GitHub account*. To simplify updating
the code, we recommend that all users obtain the code using git. For more in-depth instructions on how to
use git, see dev_git_intro.

To install the MDTF package on a local machine, open a terminal and create a directory named mdtf. In-
structions for end-users and new developers are then as follows:

¢ For end users:

1. % cd mdtf, then clone your fork of the MDTF repo on your machine:

% git clone https://github.com/<your GitHub account
name>/MDTF-diagnostics.

3 https://docs.conda.io/en/latest/
* https://github.com/NOAA-GFDL/MDTF-diagnostics

https://docs.conda.io/en/latest/
https://github.com/NOAA-GFDL/MDTF-diagnostics

MDTF Getting Started Guide, Release 3.0 beta 3

2. Verify that you are on the main branch: %, git branch. This is the default, but it never hurts to
get in the habit of running git branch before you start working.

3. Check out the latest official release”:
% git checkout tags/v3.0-beta.3.

4. Proceed with the installation process described below.

5. Check out a new branch that will contain your edited config files:

% git checkout -b <branch name>.

6. Update the config files, then commit the changes:
% git commit -m "description of your changes".

7. Push the changes on your branch to your remote fork:

% git push -u origin <branch name>.
* For new POD developers:

1. % cd mdtf, then clone your fork of the MDTF repo on your machine:

% git clone https://github.com/<your GitHub account
name>/MDTF-diagnostics.

2. Check out the develop branch: % git checkout develop.
3. Proceed with the installation process described below.

4. Check out a new branch for your POD:
% git checkout -b feature/<Your POD's name>.

5. Edit existing files/create new files, then commit the changes:
% git commit -m "description of your changes".

6. Push the changes on your branch to your remote fork:

% git push -u origin feature/<Your POD's name>.

The path to the code directory (. . ./mdtf/MDTF-diagnostics) is referred to as <CODE_ROOT> in what
follows. It contains the following subdirectories:

* diagnostics/: directory containing source code and documentation of individual PODs.
* doc/: source code for the documentation website.

* shared/: shared code and resources for use by both the framework and PODs.

* sites/: site-specific code and configuration files.

* src/: source code of the framework itself.

* tests/: general tests for the framework.

For advanced users interested in keeping more up-to-date on project development and contributing feedback,
the main branch of the GitHub repo contains features that haven’t yet been incorporated into an official
release, which are less stable or thoroughly tested.

5 https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.3

https://github.com/NOAA-GFDL/MDTF-diagnostics/releases/tag/v3.0-beta.3

MDTF Getting Started Guide, Release 3.0 beta 3

1.2.2 Obtaining supporting data

Supporting observational data and sample model data are available via anonymous FTP from ftp://ftp.cgd.
ucar.edu/archive/mdtf. The observational data is required for the PODs’ operation, while the sample model
data is optional and only needed for test and demonstration purposes. The files you will need to download
are:

* Digested observational data (159 Mb): MDTE_v2.1.a.0bs_data.tar®.
* NCAR-CESM-CAM sample data (12.3 Gb): model.QBOi.EXP1.AMIP.001 tar’.
» NOAA-GFDL-CM4 sample data (4.8 Gb): model. GFDL.CM4.c961.32.am4g10r8.tar®.

The default test case uses the QBOi . EXP1.AMIP. 001 sample dataset, and the GFDL.CM4 . c96L32. am4g10r8
sample dataset is only for testing the MJO Propagation and Amplitude POD. Note that the above paths are
symlinks to the most recent versions of the data, and will be reported as having a size of zero bytes in an FTP
client.

Download these files and extract the contents in the following directory hierarchy under the mdtf directory:

mdtf
MDTF-diagnostics (= <CODE_ROOT>)
inputdata
model (= <MODEL_DATA_ROQOT>)
GFDL.CM4.c96L32.am4gl10r8
day
GFDL.CM4.c96L32.am4g10r8.precip.day.nc
(... other .nc files)
QB0i.EXP1.AMIP.001
1hr
(QBOi.EXP1.AMIP.001.PRECT. 1hr.nc
(... other .nc files)
3hr
QBOi.EXP1.AMIP.001.PRECT.3hr.nc
day
QBOi.EXP1.AMIP.001.FLUT.day.nc
(... other .nc files)
mon
(QBOi.EXP1.AMIP.001.PS.mon.nc
(... other .nc files)
obs_data (= <OBS_DATA_ROOT>)
(... supporting data for individual PODs)

Note that mdtf now contains both the MDTF-diagnostics and inputdata directories.

You can put the observational data and model output in different locations, e.g. for space reasons, by changing
the paths given in 0BS_DATA_ROOT and MODEL_DATA_ROOT as described below in Section 1.2.4.

® ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.1.a.0bs_data.tar
7 ftp://ftp.cgd.ucar.edu/archive/mdtf/model. QBOi.EXP1.AMIP.001.tar
8 ftp://ftp.cgd.ucar.edu/archive/mdtf/model. GFDL.CM4.c961.32.am4g10r8.tar

ftp://ftp.cgd.ucar.edu/archive/mdtf
ftp://ftp.cgd.ucar.edu/archive/mdtf
ftp://ftp.cgd.ucar.edu/archive/mdtf/MDTF_v2.1.a.obs_data.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/model.QBOi.EXP1.AMIP.001.tar
ftp://ftp.cgd.ucar.edu/archive/mdtf/model.GFDL.CM4.c96L32.am4g10r8.tar
../sphinx_pods/MJO_prop_amp.html

MDTF Getting Started Guide, Release 3.0 beta 3

1.2.3 Installing dependencies via the conda package manager

The MDTF framework code is written in Python 3.7, but supports running PODs written in a variety of
scripting languages and combinations of libraries. To ensure that the correct versions of these dependencies
are installed and available, we use conda’, a free, open-source package manager. Conda is one component of
the Miniconda'® and Anaconda'' python distributions, so having Miniconda/Anaconda is sufficient but not
necessary.

For maximum portability and ease of installation, we recommend that all users manage dependencies through
conda using the steps below, even if they have independent installations of the required languages. A com-
plete installation of all dependencies will take roughly 5 Gb, less if you’ve already installed some of the
dependencies through conda. The location of this installation can be changed with the -—conda_root and
—--env_dir flags described below.

If these space requirements are prohibitive, we provide an alternate method of installation which makes no
use of conda and instead assumes the user has installed the required external dependencies, at the expense of
portability. This is documented in a separate section.

Installing the conda package manager

In this section, we install the conda package manager if it’s not already present on your system.

* To determine if conda is installed, run %, conda info as the user who will be using the package.
The package has been tested against versions of conda >=4.7.5. If a pre-existing conda installation is
present, continue to the following section to install the package’s environments. These environments
will co-exist with any existing installation.

Note: Do not reinstall Miniconda/Anaconda if it’s already installed for the user who will be running
the package: the installer will break the existing installation (if it’s not managed with, e.g., environment
modules.)

* If % conda info doesn’t return anything, you will need to install conda. We recommend doing so
using the Miniconda installer (available here'?) for the most recent version of python 3, although any
version of Miniconda or Anaconda released after June 2019, using python 2 or 3, will work.

» Follow the conda installation instructions'? appropriate to your system.

» Toward the end of the installation process, enter “yes” at “Do you wish the installer to initialize Mini-
conda3 by running conda init?” (or similar) prompt. This will allow the installer to add the conda path
to the user’s shell login script (e.g., ~/.bashrc or ~/.cshrc). It’s necessary to modify your login
script due to the way conda is implemented.

* Start a new shell to reload the updated shell login script.

% https://docs.conda.io/en/latest/

10 https://docs.conda.io/en/latest/miniconda.html

' https://www.anaconda.com/

12 https://docs.conda.io/en/latest/miniconda.html

13 https://docs.conda.io/projects/conda/en/latest/user- guide/install/index.html

https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

MDTF Getting Started Guide, Release 3.0 beta 3

Installing the package’s conda environments

In this section we use conda to install the versions of the language interpreters and third-party libraries
required by the package’s diagnostics.

* First, determine the location of your conda installation by running % conda info --base as the user
who will be using the package. This path will be referred to as <CONDA_ROOT> below.

* If you don’t have write access to <CONDA_ROOT> (for example, if conda has been installed for all
users of a multi-user system), you will need to tell conda to install its files in a different, writable
location. You can also choose to do this out of convenience, e.g. to keep all files and programs used
by the MDTF package together in the mdtf directory for organizational purposes. This location will
be referred to as <CONDA_ENV_DIR> below.

* Install all the package’s conda environments by running

% cd <CODE_ROOT>
% ./src/conda/conda_env_setup.sh --all --conda_root <CONDA_ROOT> --env_dir <CONDA_
_ENV_DIR>

The names of all conda environments used by the package begin with “_MDTF”, so as not to conflict
with other environments in your conda installation. The installation process should finish within ten
minutes.

— Substitute the paths identified above for <CONDA_ROOT> and <CONDA_ENV_DIR>.

— If the —-—env_dir flag is omitted, the environment files will be installed in your system’s conda’s
default location (usually <CONDA_ROQOT>/envs).

Note: After installing the framework-specific conda environments, you shouldn’t alter them manually (i.e.,
never run conda update on them). To update the environments after an update to a new release of the
framework code, re-run the above commands.

These environments can be uninstalled by deleting their corresponding directories under
<CONDA_ENV_DIR> (or <CONDA_ROOT>/envs/).

Location of the installed executable

The script used to install the conda environments in the previous section creates a script named mdtf in the
MDTEF-diagnostics directory. This script is the executable you’ll use to run the package and its diagnostics.
To test the installation, run

% cd <CODE_ROOT>
% ./mdtf --version

The output should be

=== Starting <CODE_ROO0T>/mdtf_framework.py

mdtf 3.0 beta 3

MDTF Getting Started Guide, Release 3.0 beta 3

1.2.4 Configuring framework paths

In order to run the diagnostics in the package, it needs to be provided with paths to the data and code depen-
dencies installed above. In general, there are two equivalent ways to configure any setting for the package:

* All settings are configured with command-line flags. The full documentation for the command line
interface is at ref_cli.

* Long lists of command-line options are cumbersome, and many of the settings (such as the paths
to data that we set here) don’t change between different runs of the package. For this purpose, any
command-line setting can also be provided in an input configuration file.

* The two methods of setting options can be freely combined. Any values set explicitly on the command
line will override those given in the configuration file.

For the remainder of this section, we describe how to edit and use configuration files, since the paths to data,
etc., we need to set won’t change.

An example of the configuration file format is provided at src/default_tests.jsonc'*. This is meant to be a
template you can customize according to your purposes: save a copy of the file at <config_file_path> and
open it in a text editor. The following paths need to be configured before running the framework:

e OBS_DATA_ROOT should be set to the location of the supporting data that you downloaded in Section
1.2.2. If you used the directory structure described in that section, the default value provided in the con-
figuration file (. . /inputdata/obs_data/) will be correct. If you put the data in a different location,
this value should be changed accordingly. Note that relative paths can be used in the configuration file,
and are always resolved relative to the location of the MDTF-diagnostics directory (<CODE_ROQOT>).

* Likewise, MODEL_DATA_ROOT should be updated to the location of the NCAR-CESM-CAM sample
data (model.QB0i.EXP1.AMIP.001.tar)downloaded in Section 1.2.2. This data is required to run
the test in the next section. If you used the directory structure described in Section 1.2.2, the default
value provided in the configuration file (. . /inputdata/model/) will be correct.

* conda_root should be set to the location of your conda installation: the value of <CONDA_ROOT>
that was used in Section 1.2.3.

» Likewise, if you installed the package’s conda environments in a non-default location by using
the -—env_dir flag in Section 1.2.3, the option conda_env_root should be set to this path
(<CONDA_ENV_DIR>).

* Finally, OUTPUT_DIR should be set to the location you want the output files to be written to (default:
mdtf/wkdir/; will be created by the framework). The output of each run of the framework will be
saved in a different subdirectory in this location.

In Running the package on your data (page 10), we describe more of the most important configuration options
for the package, and in particular how you can configure the package to run on different data. A complete
description of the configuration options is at ref_cli, or can be obtained by running % ./mdtf --help.

14 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 3

1.2.5 Running the package on sample model data

You are now ready to run the package’s diagnostics on the sample data from NCAR’s CESM-CAM model. We
assume you’ve edited a copy of src/default_tests.jsonc'®, which is saved at <config_file_path>, as described
in the previous section.

% cd <CODE_ROOT>
% ./mdtf -f <config_file_path>

The first few lines of output will be

=== Starting <CODE_ROO0T>/mdtf_framework.py

PACKAGE SETTINGS:
case_list(0):
CASENAME: QBOi.EXP1.AMIP.001
model: CESM
convention: CESM
FIRSTYR: 1977
LASTYR: 1981
[...]

Run time may be up to 10-20 minutes, depending on your system. The final lines of output should be:

Exiting normally from <CODE_ROOT>/src/core.py
Summary for QBOi.EXP1.AMIP.001:
A1l PODs exited cleanly.
Output written to <OUTPUT_DIR>/MDTF_QBOi.EXP1.AMIP.001_1977_1981

This shows that the output of the package has been saved to a directory named MDTF_QBOi.EXP1.AMIP.
001_1977_1981 in <OUTPUT_DIR>. The results are presented as a series of web pages, with the top-level
page named index.html. To view the results in a web browser, run (e.g.,)

% google-chrome <OUTPUT_DIR>/MDTF_QBOi.EXP1.AMIP.001_1977_1981/index.html &

Currently the framework only analyzes data from one model run at a time. To run another test for the the
MJO Propagation and Amplitude POD on the sample data from GFDL's CM4 model, open the configuration
file at <config_file_path>, delete or comment out the section for QB0i.EXP1.AMIP.001 in the caselist
section of that file, and uncomment the section for GFDL.CM4 . c96L32.am4g10r8.

In Running the package on your data (page 10), we describe further options to customize how the package is
run.

15 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc
../sphinx_pods/MJO_prop_amp.html

MDTF Getting Started Guide, Release 3.0 beta 3

1.3 Running the package on your data

In this section we describe how to proceed beyond running the simple test case described in the previous
section (page 3), in particular how to run the framework on your own model data.

1.3.1 Preparing your data for use by the package

You have multiple options for organizing or setting up access to your model’s data in a way that the framework
can recognize. This task is performed by a “data source,” a code plug-in that handles obtaining model data
from a remote location for analysis by the PODs.

For a list of the available data sources, what types of model data they provide and how to configure them, see
the data source reference. In the rest of this section, we describe the steps required to add your own model
data for use with the LocalFile data source, since it’s currently the most general-purpose option.

Selecting and formatting the model data

Consult the POD summary to identify which diagnostics you want to run and what variables are required as
input for each. In general, if the data source can’t find data that’s required by a POD, an error message will
be logged in place of that POD’s output that should help you diagnose the problem.

The LocalFile data source works with model data structured with each variable stored in a separate netCDF
file. Some additional conditions on the metadata are required: any model output compliant with the CF
conventions'® is acceptable, but only a small subset of those conventions are required by this data source.
See the data format reference for a complete description of what’s required.

Naming variables according to a convention

The LocalFile data source is intended to deal with output produced by different models, which poses a prob-
lem because different models use different variable names for the same physical quantity. For example, in
NCAR’s CESM2'” the name for total precipitation is PRECT, while the name for the same quantity in GFDL’s
CM4'8 is precip.

In order to identify what variable names correspond to the physical quantities requested by each POD, the
LocalFile data source requires that model data follow one of several recognized variable naming conventions
defined by the package. The currently recognized conventions are:

 CMIP: Variable names and units as used in the CMIP6'” data request®”. There is a web interface’ to
the request. Data from any model that has been published as part of CMIP6 (e.g., made available via
ESGF??) should follow this convention.

1 http://cfconventions.org/

'7 https://www.cesm.ucar.edu/models/cesm2/

18 https://www.gfdl.noaa.gov/coupled-physical-model-cm4/
19 https://www.wcrp-climate.org/wgcm-cmip/wgem-cmip6
20 https://doi.org/10.5194/gmd-2019-219

21 http://clipc-services.ceda.ac.uk/dreq/index.html

22 https://esgf-node.llnl.gov/projects/cmip6/

10

http://cfconventions.org/
http://cfconventions.org/
https://www.cesm.ucar.edu/models/cesm2/
https://www.gfdl.noaa.gov/coupled-physical-model-cm4/
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://doi.org/10.5194/gmd-2019-219
http://clipc-services.ceda.ac.uk/dreq/index.html
https://esgf-node.llnl.gov/projects/cmip6/

MDTF Getting Started Guide, Release 3.0 beta 3

* NCAR: Variable names and units used in the default output of models developed at the National Center
for Atmospheric Research?, such as CAM?* (all versions) and CESM2%.

* GFDL: Variable names and units used in the default output of models developed at the Geophysical
Fluid Dynamics Laboratory?®, such as AM4?7, CM4? and SPEAR?’.

The names and units for the variables in the model data you’re adding need to conform to one of the above
conventions in order to be recognized by the LocalFile data source. For models that aren’t currently sup-
ported, the workaround we recommend is to generate CMIP-compliant data by postprocessing model output
with the CMOR?" tool. We hope to offer support for the naming conventions of a wider range of models in
the future.

Adding your model data files

The LocalFile data source reads files from a local directory that follow the filename convention used for the
sample model data. Specifically, the files should be placed in a subdirectory in <MODEL_DATA_ROOT>
and named following the pattern

<MODEL_DATA_ROOT>/<dataset_name>/<frequency>/<dataset_name>.<variable_name>.<frequency>.nc,
where

* <MODEL_DATA_ROOTS> is the path where the sample model data was installed (see Configuring
framework paths (page 8)),

* <dataset_name> is any string uniquely identifying the dataset,

» <frequency> is a string describing the frequency at which the data is sampled, e.g. 1hr, 3hr, 6hr,
day, mon or year.

* <variable_name> is the name of the variable in the convention chosen in the previous section.

As an example, here’s how the sample model data is organized:

inputdata
model (= <MODEL_DATA_ROOT>)
GFDL.CM4.c96L32.am4g10r8
day
GFDL.CM4.c96L32.am4g10r8.precip.day.nc
(... other .nc files)
QBOi.EXP1.AMIP.001
lhr
QBOi.EXP1.AMIP.001.PRECT. 1hr.nc
(... other .nc files)
3hr

(continues on next page)

23 https://ncar.ucar.edu

24 https://www.cesm.ucar.edu/models/cesm2/atmosphere/

2 hitps://www.cesm.ucar.edu/models/cesm2/

26 https://www.gfdl.noaa.gov/

?7 https://www.gfdl.noaa.gov/am4/

2 hitps://www.gfdl.noaa.gov/coupled-physical-model-cm4/
2 https://www.gfdl.noaa.gov/spear/

30 https://cmor.lInl.gov/

11

https://ncar.ucar.edu
https://ncar.ucar.edu
https://www.cesm.ucar.edu/models/cesm2/atmosphere/
https://www.cesm.ucar.edu/models/cesm2/
https://www.gfdl.noaa.gov/
https://www.gfdl.noaa.gov/
https://www.gfdl.noaa.gov/am4/
https://www.gfdl.noaa.gov/coupled-physical-model-cm4/
https://www.gfdl.noaa.gov/spear/
https://cmor.llnl.gov/

MDTF Getting Started Guide, Release 3.0 beta 3

(continued from previous page)

QB0i.EXP1.AMIP.001.PRECT.3hr.nc
day
(QBOi.EXP1.AMIP.001.FLUT.day.nc
(... other .nc files)
mon
QB0i.EXP1.AMIP.001.PS.mon.nc
(... other .nc files)

Note that the GFDL.CM4.c96L32.am4g10r8 dataset uses the GFDL convention (precipitation = precip),
while the QBOi.EXP1.AMIP.001 dataset uses the NCAR convention (precipitation = PRECT).

If the data you want to analyze is available on a locally mounted disk, we recommend creating symlinks®'
that have the needed filenames, rather than making copies of the data files. For example,

% mkdir -p inputdata/model/my_dataset/day
% 1n -s <path> inputdata/model/my_dataset/day/my_dataset.pr.day.nc

will create a symbolic link to the file at <path> that follows the filename convention used by this data source:

inputdata
model (= <MODEL_DATA_ROOT>)
GFDL.CM4.c96L32.am4g10r8
QBOi.EXP1.AMIP.001
my_dataset
day
my_dataset.pr.day.nc

Finally, we note that it’s not necessary to place the files (or symlinks) for all experiments in
<MODEL_DATA_ROOT>. To point the LocalFile data source to data stored in the subdirectory hierar-
chy following the pattern described above, but located in a different place, pass that location to the package
as <CASE_ROOT_DIR>.

1.3.2 Running the package on your data
How to configure the package

All configuration options for the package are set via its command line interface, which is described in ref_cli,
or by running % mdtf --help. Because it’s cumbersome to deal with long lists of command-line flags,
options can also be set in a JSON configuration file passed to the package with the —-f/--input-file flag.
An example of this input file is given in src/default_tests.jsonc*?, which you used previously (page 9) to run
the package on test data. We recommend using this file as a template, making copies and customizing it as
needed.

Option values given on the command line always take precedence over those set in the configuration file.
This is so that you can store options that don’t frequently change in the file (e.g., input/output paths) and then
use flags to set only those options you want to change from run to run (e.g., the start and end years for the

31 https://en.wikipedia.org/wiki/Symbolic_link
32 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

12

https://en.wikipedia.org/wiki/Symbolic_link
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 3

analysis). In all cases, the complete set of option values used in each run of the package is saved as a JSON
configuration file in the package’s output, so you can always reproduce your results.

Options controlling the analysis

The configuration options required to specify what analysis the package should do are:
* ——CASENAME <name>: Identifier used to label this run of the package. Can be set to any string.

* ——experiment <dataset_name>: The name (subdirectory) you assigned to the data files in the previ-
ous section. If this option isn’t given, its value is set from <CASENAME>.

* ——convention <convention name>: The naming convention used to assign the <variable_name>s,
from the previous section.

* ——FIRSTYR <YYYY>: The starting year of the analysis period.

* ——LASTYR <YYYY>: The end year of the analysis period. The analysis period includes all data that
falls between the start of 1 Jan on <FIRSTYR> and the end of 31 Dec on <LASTYR>. An error will
be raised if the data provided for any requested variable doesn’t span this date range.

If specifying these in a configuration file, these options should given as entry in a list titled case_list
(following the example in src/default_tests.jsonc®*). Using the package to compare the results of a list of
different experiments is a major feature planned for an upcoming release.

You will also need to specify the list of diagnostics to run. This can be given as a list of POD names (as given
in the diagnostics/** directory), or all to run all PODs. This list can be given by the ~—pods command-line
flag, or by a pod_list attribute in the case_1list entry.

Other options

Some of the most relevant options which control the package’s output are:

» ——-save-ps: Set this flag to have PODs save copies of all plots as postscript files (vector graphics) in
addition to the bitmaps used in the HTML output pages.

* ——-save-nc: Set this flag to have PODs retain netCDF files of any intermediate calculations, which
may be useful if you want to do further analyses with your own tools.

* —-make-variab-tar: Set this flag to save the collection of files (HTML pages and bitmap graphics)
output by the package as a single .tar file, which can be useful for archival purposes.

The full list of configuration options is given at ref_cli.

33 https://github.com/NOAA-GFDL/MDTEF-diagnostics/blob/main/src/default_tests.jsonc
3 https://github.com/tsjackson-noaa/MDTF-diagnostics/tree/main/diagnostics

13

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc
https://github.com/tsjackson-noaa/MDTF-diagnostics/tree/main/diagnostics

MDTF Getting Started Guide, Release 3.0 beta 3

Running the package

From this point, the instructions for running the package are the same as for running it on the sample data
(page 9), assuming you’ve set the configuration options by editing a copy of the configuration file template
at src/default_tests.jsonc®. The package is run in the same way:

% cd <CODE_ROOT>
% ./mdtf -f <new config file path>

The first few lines of console output will echo the values you’ve provided for <CASENAME>, etc., as con-
firmation.

The output of the package will be saved as a series of web pages in a directory named
MDTFE_<CASENAME>_<FIRSTYR>_<LASTYR> within <OUTPUT_DIR>. If you run the package mul-
tiple times with the same configuration values, it’s not necessary to change the <CASENAME>: by default,
the suffixes “.v1”, “.v2”, etc. will be added to duplicate output directory names so that results aren’t acci-
dentally overwritten.

The results of the diagnostics are presented as a series of web pages, with the top-level page named index.html.
To view the results in a web browser, run (e.g.,)

% google-chrome <OUTPUT_DIR>/MDTF_<CASENAME>_<FIRSTYR>_<LASTYR>/index.html &

3 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

14

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

CHAPTER
TWO

SITE-SPECIFIC DOCUMENTATION

2.1 Customizing your installation with the ‘local’ site

2.1.1 About the ‘local’ site

The --site command-line flag is used to implement plug-in functionality for site-specific code, (eg, en-
abling data search from a lab’s internally-accessible filesystem.) The default value for this flag is 1ocal:
code and configuration files placed in the sites/local/ directory will be used to customize the general-purpose
framework code in src/.

The most important use case for this functionality is allowing you to set default values for command-line
flags, as described in the next section. This lets you set configuration options that are the same for each run
(e.g., <OBS_DATA_ROQT?>, the path to your local copy of the observational data used by the diagnostics)
once, in a file in this directory, without having to remember to include the corresponding command-line flag
every time you run the package.

This function only sets default values: any value may be overridden for any run of the package by specifying
it explicitly on the command line (or in an input file). Regardless of where they originate, the complete list
of configuration settings used in a run of the package is saved in the output, so you can always recreate a run
of the package even if you change these defaults.

The full API for the —-site functionality, as well as instructions on how to develop your own site-specific
data sources and other code plug-ins, will be documented in an upcoming release.

2.1.2 How to set default values

When run, the framework looks for a file named defaults. jsonc in the directory for the chosen site. An
example of the format for this file is provided in src/default_tests.jsonc®®, which we encourage you to make
a copy of, rename, and edit.

More specifically, the defaults. jsonc file should be a JSON file (with //-comments allowed) listing
<key>:<value> pairs. The <key> should be the long name of one of the command-line flags, with hyphens
replaced by underscores. The <value> should be the desired default value. <key>s which don’t correspond
to recognized command-line flags, such as the caselist in src/default_tests.jsonc?’, are ignored.

3 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc
3 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

15

../sphinx/ref_cli.html
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc
../sphinx/ref_cli.html
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/default_tests.jsonc

MDTF Getting Started Guide, Release 3.0 beta 3

You can test the settings in your defaults. jsonc file by running % mdtf --help. The beginning of the
help text will list the path to the default settings files being used, and the help text for each command-line
flag will note its default value.

2.1.3 Switching between multiple defaults with multiple sites

A site is simply a subdirectory of the sites/ directory. You can manage and easily switch between multiple
sets of default values by creating additional subdirectories within sites/, along with a defaults. jsonc
file for each, and selecting one at runtime with the —-site flag.

This can be useful if you frequently need to analyze data from a variety of different data sources: you can
create one site per data source, and add the settings specifying the desired data set from that source at runtime.

2.2 GFDL-specific information

This page contains information specific to the site installation at the Geophysical Fluid Dynamics Labora-
tory*® (GFDL), Princeton, NJ, USA.

2.2.1 Site installation

The DET team maintains a site-wide installation of the framework and all supporting data at
/home/mdteam/DET/analysis/mdtf/MDTF-diagnostics. This is kept up-to-date and is accessible from both
workstations and PPAN; in particular it is not necessary for an end user to set up conda environments or
download any supporting data, as described in the installation instructions.

Invoking the package from the site installation’s wrapper script automatically prepends
--site="NOAA_GFDL" to the user’s command-line flags.

Please contact us if your use case can’t be accommodated by this installation.

2.2.2 Additional ways to invoke the package

The site installation provides alternative ways to run the diagnostics within GFDL’s existing workflow:

1. Called from an interactive shell on PPAN or workstations. This is the standard mode of running the
package, described in the rest of the documentation.

2. Asabatch job on PPAN, managed via slurm. This previously required its own wrapper script, but now
can be done using the same entry point and CLI options as for interactive execution.

3. Within FRE XMLs. This is done by calling the mdtf gfdl.csh®” wrapper script from an <analysis>
tag in the XML. Currently, FRE requires that each analysis script be associated with a single model
<component>. This poses difficulties for diagnostics which use data generated by multiple compo-
nents. We provide two ways to address this issue:

3 https://www.gfdl.noaa.gov/
% https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh

16

../sphinx/ref_data_sources.html
https://www.gfdl.noaa.gov/
https://www.gfdl.noaa.gov/
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh

MDTF Getting Started Guide, Release 3.0 beta 3

A. If it’s known ahead of time that a given <component> will dominate the run time and finish
last, one can call mdtf_gfdl.csh from an <analysis> tag in that component only. In this
case, the framework will search all data present in the /pp/ output directory when it’s called. The
<component> being used doesn’t need to generate data analyzed by the diagnostics; in this case
it’s only used to schedule the diagnostics’ execution.

B. If one doesn’t know which <component> will finish last, a more robust solution is to call
mdtf_gfdl.csh --component_only from each <component> generating data to be analyzed.
When the --component_only flag is set, every time the framework is called it will only run the
diagnostics for which all the input data is available and which haven’t run already (which haven’t
written their output to $0UTPUT_DIR.

2.2.3 Additional data sources
In addition to the framework’s built-in data sources, several data sources are defined that are only accessible
to GFDL users.

All the data sources in this section use GFDL’s in-house General Copy Program (GCP, not to be confused
with Google Compute Platform) for all file transfers. If GCP is not present on $PATH when the package is
started, the package will load the appropriate environment module.

Any data which is on GFDL’s DMF tape-backed filesystem will be requested with dmget prior to copy. All
files requested by all PODs are batched into a single call to dmget and to GCP. Framework execution blocks
after the call to dmget is issued (the framework has no other tasks to do until the data is transferred locally),
which can lead to long or unpredictable run times if data that has been migrated to tape is requested.

CMIP6 data on the Unified Data Archive

Selected via -~-data-manager="CMIP6_UDA".

Data source for analyzing CMIP6 data made available on on the Unified Data Archive (UDA)’s high-priority
storage at /uda/CMIP6. Command-line options and method of operation are the same as documented in
ref-data-source-cmip6.

CMIP6 data on the /archive filesystem

Selected via -~-data-manager="CMIP6_archive".

The same as above, but for analyzing the wider range of CMIP6 data on the DMF filesystem at
/archive/pcmdi/repo/CMIP6. Command-line options and method of operation are the same as documented
in ref-data-source-cmip6.

17

MDTF Getting Started Guide, Release 3.0 beta 3

CMIP6 data on /data_cmip6

Selected via -~—-data-manager="CMIP6_data_cmip6".

The same as above, but for analyzing pre-publication data on /data_cmip6/CMIP6 (only mounted on PPAN).
Command-line options and method of operation are the same as documented in ref-data-source-cmip6.

Results of FREPP-processed runs

Selected via —~—data-manager="GFDL_PP".

This data source searches for model data produced using GFDL’s in-house postprocessing tool, FREPP.
Note that this is a completely separate concern from invoking the package from the FRE pipeline (described
above): data that has been processed and saved in this convention can be analyzed equally well in any of the
package’s modes of operation.

Command-line options

<CASE_ROOT_DIR> should be set to the root of the postprocessing directory hierarchy (i.e., should end in
/Pp)-

--any-components If this flag is set, the data source will return data from different model
<component>s requested by the same POD. This is necessary for, e.g.,
PODs that compare data from different modeling realms. The default be-
havior is to require all variables requested by a POD to come from the same
model <component>.

Data selection heuristics

This data source implements the following logic to guarantee that all data it provides to the PODs are consis-
tent, i.e. that the variables selected have been generated from the same run of the same model. An error will
be raised if no set of variables can be found that satisfy the user’s input above and the following requirements:

 This data source only searches data saved as time series (/ts/), rather than time averages, since no
POD is currently designed to use time-averaged data.

* If the same data has been saved in files of varying chronological length (<chunk_freq>), the short-
est <chunk_freq> is used, in order to minimize the amount of data that is transferred but not used
(because it falls outside of the user’s analysis period).

* Unless the -—any-components flag is set, the model <component> must be the same for all variables
requested by a POD, but can be different for different PODs. The same value will be chosen for all
PODs if possible. Setting the ——any-components flag drops this restriction.

* If the same data is provided by multiple model <component>s, a single <component> is selected via
the following heuristics:

— Preference is given to model components starting with “cmip” (case insensitive), in order to
support analysis of data produced as part of CMIP6.

— If multiple <component>s are still eligible, the one with the fewest words in the identifier (sep-
arated by underscores) is selected; in case of a tie, the <component> name with the shortest
overall string length is used.

18

MDTF Getting Started Guide, Release 3.0 beta 3

Quasi-automated source selection

Selected via -~-data-manager="GFDL_auto".

Provided mostly for backwards compatibility, this dispatches operation to the CMIP6_UDA or GFDL_PP data
sources based on whether <CASE_ROOT_DIR> is a valid postprocessing directory. Command-line options
are the union of those for the CMIP6_UDA or GFDL_PP data sources.

2.2.4 Additional command-line options

In addition to the framework’s built-in command-line options, the following site-specific options are recog-
nized.

For long command line flags, words may be separated with hyphens (GNU standard) or with
underscores (python variable name convention). For example, --file-transfer-timeout and
--file_transfer_timeout are both recognized by the package as synonyms for the same setting.

GFDL-specific flags

The following new flags are added:

--GFDL-PPAN-TEMP <DIR> If running on the GFDL PPAN cluster, set the $MDTF_TMPDIR
environment variable to this location and create temp files here. This must
be a location accessible via GCP, and the package does not currently verify
this. Defaults to $TMPDIR.

--GFDL-WS-TEMP <DIR> If running on a GFDL workstation, set the $MDTF_TMPDIR envi-
ronment variable to this location and create temp files here. The directory
will be created if it doesn’t exist. This must be accessible via GCP, and the
package does not currently verify this. Defaults to /net2/$USER/tmp.

--frepp Normally this is set by the mdtf_gfdl.csh*’ wrapper script, and not directly
by the user. Set flag to invoke the framework in the FRE-based execution
mode (3A. or 3B. above), processing data as part of the FRE pipeline.

--ignore-component Normally this is set by the mdtf_gfdl.csh*' wrapper script, and not directly
by the user. If set, this flag tells the framework to search the entire /pp/
directory for model data (mode 3A. above); default is to restrict to model
component passed by FRE. Ignored if --frepp is not set.

40 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh
4 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh

19

../sphinx/ref_cli.html
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/sites/NOAA_GFDL/mdtf_gfdl.csh

MDTF Getting Started Guide, Release 3.0 beta 3

GFDL-specific default values

The following paths are set to more useful default values:

20

--OBS-DATA-REMOTE <DIR> Site-specific installation of observational data used by indi-
vidual PODs at /home/Oar.Gfdl.Mdteam/DET/analysis/mdtf/obs_data. If
running on PPAN, this data will be GCP’ed to the current node. If running
on a workstation, it will be symlinked.

--OBS-DATA-ROOT <OBS_DATA_ROOT> Local directory for observational data. Defaults
to $MDTF_TMPDIR/inputdata/obs_data, where the environment variable
$MDTF_TMPDIR is defined as described above.

--MODEL-DATA-ROOT <MODEL_DATA_ROOT> Local directory used as a destination
for downloaded model data. Defaults to $MDTF_TMPDIR/inputdata/model,
where the environment variable $MDTF_TMPDIR is defined as described
above.

--WORKING-DIR <WORKING_DIR> Working directory. Defaults to
$MDTF_TMPDIR/wkdir, where the environment variable $MDTF_TMPDIR is
defined as described above.

-0, --OUTPUT-DIR <OUTPUT_DIR> Destination for output files. Defaults to
$MDTF_TMPDIR/mdtf_out, which will be created if it doesn’t exist.

CHAPTER
THREE

ACKNOWLEDGEMENTS

Development of this code framework for process-oriented diagnostics was supported by the National Oceanic
and Atmospheric Administration*> (NOAA) Climate Program Office Modeling, Analysis, Predictions and
Projections* (MAPP) Program (grant # NA18OAR4310280). Additional support was provided by Univer-
sity of California Los Angeles*, the Geophysical Fluid Dynamics Laboratory*’, the National Center for
Atmospheric Research?, Colorado State University*’, Lawrence Livermore National Laboratory*® and the
US Department of Energy®.

Many of the process-oriented diagnostics modules (PODs) were contributed by members of the NOAA Model
Diagnostics Task Force’ under MAPP support. Statements, findings or recommendations in these docu-
ments do not necessarily reflect the views of NOAA or the US Department of Commerce.

3.1 Disclaimer

This repository is a scientific product and is not an official communication of the National Oceanic and At-
mospheric Administration, or the United States Department of Commerce. All NOAA GitHub project code
is provided on an ‘as is’ basis and the user assumes responsibility for its use. Any claims against the De-
partment of Commerce or Department of Commerce bureaus stemming from the use of this GitHub project
will be governed by all applicable Federal law. Any reference to specific commercial products, processes,
or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their en-
dorsement, recommendation or favoring by the Department of Commerce. The Department of Commerce
seal and logo, or the seal and logo of a DOC bureau, shall not be used in any manner to imply endorsement
of any commercial product or activity by DOC or the United States Government.

42 https://www.noaa.gov/

43 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System- Science-and-Modeling/MAPP

4 https://www.ucla.edu/

4 https://www.gfdl.noaa.gov/

46 https://ncar.ucar.edu/

47 https://www.colostate.edu/

8 https://www.lInl.gov/

4 https://www.energy.gov/

30 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/M APP/MAPP-Task-Forces/
Model-Diagnostics-Task-Force

21

https://www.noaa.gov/
https://www.noaa.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://www.ucla.edu/
https://www.ucla.edu/
https://www.gfdl.noaa.gov/
https://ncar.ucar.edu/
https://ncar.ucar.edu/
https://www.colostate.edu/
https://www.llnl.gov/
https://www.energy.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force

	Getting started
	Overview
	Installation instructions
	Running the package on your data

	Site-specific documentation
	Customizing your installation with the ‘local’ site
	GFDL-specific information

	Acknowledgements
	Disclaimer

