
MDTFDeveloper's Walkthrough
Release 3.0 beta 2

Yi-Hung Kuoa Dani Colemanb Thomas Jacksonc
Chih-Chieh (Jack) Chenb Andrew Gettelmanb

J. David Neelina Eric Maloneyd John Krastingc
(a: UCLA; b: NCAR; c: GFDL; d:CSU)

Feb 11, 2021

CONTENTS

1 Developer information 1
1.1 Introduction for POD developers . 1
1.2 Migration from framework v2.0 . 3
1.3 POD development checklist . 4
1.4 Developer quickstart guide . 7
1.5 POD development guidelines . 11
1.6 POD settings file summary . 14
1.7 Walkthrough of framework operation . 18
1.8 POD coding best practices . 23
1.9 Git-based development workflow . 28

2 Framework reference 37
2.1 Diagnostic settings file format . 37
2.2 MDTF Environment variables . 47

3 Acknowledgements 52
3.1 Disclaimer . 52

i

CHAPTER

ONE

DEVELOPER INFORMATION

1.1 Introduction for POD developers

This walkthrough contains information for developers wanting to contribute a process-oriented diagnostic
(POD) module to the MDTF framework. There are two tracks through the material: one for developers who
have an existing analysis script they want to adapt for use in the framework, and one for developers who are
writing a POD from scratch.

Section 1.4 provides instructions for setting up POD development, in particular managing language and
library dependencies through conda. For developers already familiar with version 2.0 of the framework,
Section 1.2 summarizes changes from v2.0 to facilitate migration to v3.0. New developers can skip this
section, as the rest of this walkthrough is self-contained.

Section 1.3 Provides a list of instructions for submitting a POD for inclusion in the framework. We require
developers to submit PODs through GitHub1. See Section 1.9 for how to manage code through the GitHub
website.

Section 1.5 provides overall guidelines for POD development. Section 1.6 is a reference for the POD’s
settings file format. In Section 1.7, we walk the developers through the workflow of the framework, focusing
on aspects that are relevant for the operation of individual PODs, and using the Example Diagnostic POD2

as a concrete example to illustrate how a POD works under the framework Section 1.8 provides coding best
practices to address common issues encountered in submitted PODs..

1.1.1 Scope of a process-oriented diagnostic

The MDTF framework imposes requirements on the types of data your POD outputs and takes as input. In
addition to the scientific scope of process-oriented diagnostics, the analysis that you intend to do needs to fit
the following model:

Your POD should accept model data as input and express the results of its analysis in a series of figures,
which are presented to the user in a web page. Input model data will be in the form of one NetCDF file
(with accompanying dimension information) per variable, as requested in your POD’s settings file (page 14).
Because your POD may be run on the output of any model, you should be careful about the assumptions your
code makes about the layout of these files (eg, the range of longitude or the positive3 convention for vertical

1 https://github.com/NOAA-GFDL/MDTF-diagnostics
2 https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example
3 http://cfconventions.org/faq.html#vertical_coords_positive_attribute

1

https://github.com/NOAA-GFDL/MDTF-diagnostics
https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example
http://cfconventions.org/faq.html#vertical_coords_positive_attribute

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

coordinates). Supporting data may be in any format and will not be modified by the framework (see next
section).

The above data sources are your POD’s only input: your POD should not access the internet or other net-
worked resources. You may provide options in the settings file for the user to configure when the POD is
installed, but these cannot be changed each time the POD is run.

To achieve portability, the MDTF cannot accept PODs written in closed-source languages (eg, MATLAB
or IDL). We also cannot accept PODs written in compiled languages (eg, C or Fortran): installation would
rapidly become impractical if users had to check compilation options for each POD.

The output of your POD should be a series of figures in vector format (.eps or .ps). Optionally, we encourage
POD developers to also save relevant output data (e.g., the output data being plotted) as netcdf files, to give
users the ability to take the POD’s output and perform further analysis on it.

1.1.2 POD code organization and supporting data

In order to make your code run faster for the users, we request that you separate any calculations that don’t
depend on the model data (e.g., pre-processing of observational data), and instead save the end result of these
calculations in data files for your POD to read when it is run. We refer to this as “digested observational
data,” but it refers to any quantities that are independent of the model being analyzed. For purposes of data
provenance, reproducibility, and code maintenance, we request that you include all the pre-processing/data
reduction scripts used to create the digested data in your POD’s code base, along with references to the
sources of raw data these scripts take as input (yellow box in the figure).

Digested data should be in the form of numerical data, not figures, even if the only thing the POD does
with the data is produce an unchanging reference plot. We encourage developers to separate their “number-
crunching code” and plotting code in order to give end users the ability to customize output plots if needed.
In order to keep the amount of supporting data needed by the framework manageable, we request that you
limit the total amount of digested data you supply to no more than a few gigabytes.

In collaboration with PCMDI, a framework is being advanced that can help systematize the provenance of
observational data used for POD development. This section will be updated when this data source is ready

2

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

for public use.

1.2 Migration from framework v2.0

In this section we describe the major changes made from v2.0 to v3.0 of the framework that are relevant for
POD developers. The scope of the framework has expanded in version 3.0, which required changes in the way
the PODs and framework interact. New developers can skip this section, as the rest of this documentation is
self-contained.

1.2.1 Getting Started and Developer’s Walkthrough

A main source of documentation for v2.0 of the framework were the “Getting Started” and “Developer’s
Walkthrough” documents. Updated versions of these documents are:

• Getting Started v3.0 (PDF)4

• Developer’s Walkthrough v3.0 (PDF)5

Note: These documents contain a subset of information available on this website, rather than new material:
the text is reorganized to be placed in the same order as the v2.0 documents, for ease of comparison.

1.2.2 Checklist formigrating a POD from v2.0

Here we list the broad set of tasks needed to update a POD written for v2.0 of the framework to v3.0.

• Update settings and varlist files: In v3.0 these have been combined into a single settings.jsonc
file. See the settings file guide (page 14), reference (page 37), and example6 for descriptions of the
new format.

• Update references to framework environment variables: See the table below for an overview, and the
reference (page 47) for complete information on what environment variables the framework sets. Note
that your POD should not use any hard-coded paths or variable names, but should read this information
in from the framework’s environment variables.

• Resubmit digested observational data: To minimize the size of supporting data users need to download,
we ask that you only supply observational data specifically needed for plotting (preferably size within
MB range), as well as any code used to perform that data reduction from raw sources.

• Remove HTML templating code: Version 2.0 of the framework required that your POD’s top-level
driver script take particular steps to assemble its HTML file. In v3.0 these tasks are done by the
framework: all that your POD needs to do is generate figures of the appropriate formats and names in
the specified folders, and the framework will convert and link them appropriately.

4 https://mdtf-diagnostics.readthedocs.io/en/latest/_static/MDTF_getting_started.pdf
5 https://mdtf-diagnostics.readthedocs.io/en/latest/_static/MDTF_walkthrough.pdf
6 https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example/settings.jsonc

3

https://mdtf-diagnostics.readthedocs.io/en/latest/_static/MDTF_getting_started.pdf
https://mdtf-diagnostics.readthedocs.io/en/latest/_static/MDTF_walkthrough.pdf
https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example/settings.jsonc

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.2.3 Conversion from v2.0 environment variables

In v3.0, the paths referred to by the framework’s environment variables have been changed to be specific to
your POD. The variables themselves have been renamed to avoid possible confusion. Here’s a table of the
appropriate substitutions to make:

Table 1: Environment variable name conversion
Path Description v2.0 environment vari-

able expression
Equivalent v3.0 variable

Top-level code repository $DIAG_HOME No variable set: PODs should not access
files outside of their own source code direc-
tory within $POD_HOME

POD’s source code $VARCODE/<pod name> $POD_HOME
POD’s observa-
tional/supporting data

$VARDATA/<pod name> $OBS_DATA

POD’s working directory $variab_dir/<pod name> $WK_DIR
Path to requested NetCDF
data file for <variable
name> at date frequency
<freq>

Currently unchanged:
$DATADIR/<freq>/$CASENAME.<variable
name>.<freq>.nc

Other v2.0 paths $DATA_IN, $DIAG_ROOT,
$WKDIR

No equivalent variable set. PODs shouldn’t
access files outside of their own directories;
instead use one of the quantities above.

1.3 POD development checklist

This section lists all the steps that need to be taken in order to submit a POD for inclusion in the MDTF
framework.

1.3.1 Code and documentation submission

The material in this section must be submitted though a pull request7 to the NOAA-GFDL GitHub repo8.
This is described in Git-based development workflow (page 28).

The example POD9 should be used as a reference for how each component of the submission should be
structured.

The POD feature must be up-to-date with the NOAA-GFDL develop branch, with no outstanding merge
conflicts. See the Git-based development workflow (page 28) section for instructions on syncing your fork
with NOAA-GFDL, and pulling updates from the NOAA-GFDL develop branch into your feature branch.

7 https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
8 https://github.com/NOAA-GFDL/MDTF-diagnostics
9 https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example

4

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://github.com/NOAA-GFDL/MDTF-diagnostics
https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

POD source code

All scripts should be placed in a subdirectory of diagnostics/. Among the scripts, there should be 1) a
main driver script, 2) a template html, and 3) a settings.jsonc file. The POD directory and html template
should be named after your POD’s short name.

• For instance, diagnostics/convective_transition_diag/ contains its driver script
convective_transition_diag.py, convective_transition_diag.html, and settings.
jsonc, etc.

• The framework will call the driver script, which calls the other scripts in the same POD directory.

• If you need a new Conda environment, add a new .yml file to src/conda/, and install the environment
using the conda_env_setup.sh script as described in the Getting Started.

POD settings file

The format of this file is described in POD settings file summary (page 14) and in more detail in Diagnostic
settings file format (page 37).

POD html template for output

• The html template will be copied by the framework into the output directory to display the figures
generated by the POD. You should be able to create a new html template by simply copying and
modifying the example templates from existing PODs even without prior knowledge about html syntax.

Preprocessing scripts for digested data

The “digested” supporting data policy is described in Section 1.1.2.

For maintainability and provenance purposes, we request that you include the code used to generate your
POD’s “digested” data from raw data sources (any source of data that’s permanently hosted). This code
will not be called by the framework and will not be used by end users, so the restrictions and guidelines
concerning the POD code don’t apply.

POD documentation

• The documentation for the framework is automatically generated using sphinx10, which works with
files in reStructured text11 (reST, .rst) format. In order to include documentation for your POD, we
require that it be in this format.

– Use the example POD documentation12 as a template for the information required for your POD,
by modifying its .rst source code13. This should include a one-paragraph synopsis of the POD,

10 https://www.sphinx-doc.org/en/master/index.html
11 https://docutils.sourceforge.io/rst.html
12 https://mdtf-diagnostics.readthedocs.io/en/latest/sphinx_pods/example.html
13 https://raw.githubusercontent.com/NOAA-GFDL/MDTF-diagnostics/main/diagnostics/example/doc/example.rst

5

https://www.sphinx-doc.org/en/master/index.html
https://docutils.sourceforge.io/rst.html
https://mdtf-diagnostics.readthedocs.io/en/latest/sphinx_pods/example.html
https://raw.githubusercontent.com/NOAA-GFDL/MDTF-diagnostics/main/diagnostics/example/doc/example.rst

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

developers’ contact information, required programming language and libraries, and model output
variables, a brief summary of the presented diagnostics as well as references in which more in-
depth discussions can be found.

– The .rst files and all linked figures should be placed in a doc subdirectory under your POD
directory (e.g., diagnostics/convective_transition_diag/doc/) and put the .rst file and
figures inside.

– The most convenient way to write and debug reST documentation is with an online editor. We
recommend https://livesphinx.herokuapp.com/ because it recognizes sphinx-specific commands
as well.

– For reference, see the reStructured text introduction14, quick reference15 and in-depth guide16.

– Also see a reST syntax comparison17 to other text formats you may be familiar with.

• For maintainability, all scripts should be self-documenting by including in-line comments. The main
driver script (e.g., convective_transition_diag.py) should contain a comprehensive header pro-
viding information that contains the same items as in the POD documentation, except for the “More
about this diagnostic” section.

• The one-paragraph POD synopsis (in the POD documentation) as well as a link to the full documenta-
tion should be placed at the top of the html template (e.g., convective_transition_diag.html).

Preprocessing script documentation

The “digested” supporting data policy is described in Section 1.1.2.

For maintainability purposes, include all information needed for a third party to reproduce your POD’s di-
gested data from its raw sources in the doc directory. This information is not published on the documentation
website and can be in any format. In particular, please document the raw data sources used (DOIs/versioned
references preferred) and the dependencies/build instructions (eg. conda environment) for your preprocess-
ing script.

1.3.2 Sample and supporting data submission

Data hosting for the MDTF framework is currently managed manually. The data is currently hosted via
anonymous FTP on UCAR’s servers. Please contact the MDTF team leads via email to arrange a data
transfer.

14 http://docutils.sourceforge.net/docs/user/rst/quickstart.html
15 http://docutils.sourceforge.net/docs/user/rst/quickref.html
16 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
17 http://hyperpolyglot.org/lightweight-markup

6

https://livesphinx.herokuapp.com/
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://hyperpolyglot.org/lightweight-markup

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Digested observational or supporting data

The “digested” supporting data policy is described in Section 1.1.2.

Create a directory under inputdata/obs_data/ named after the short name, and put all your digested
observation data in (or more generally, any quantities that are independent of the model being analyzed).

• Digested data should be in the form of numerical data, not figures.

• The data files should be small (preferably a few MB) and just enough for producing figures for model
comparison.

• If you really cannot reduce the data size or require GB of space, consult with the lead team.

Samplemodel data

For PODs dealing with atmospheric phenomena, we recommend that you use sample data from the following
sources, if applicable:

• A timeslice run of NCAR CAM518

• A timeslice run of GFDL AM419 (contact the leads for password).

1.4 Developer quickstart guide

This section contains instructions for beginning to

1.4.1 Developer installation instructions

To download and install the framework for development, follow the instructions for end users given in
start_install, with the following developer-specific modifications:

Obtaining the source code

POD developers should create their branches from the develop branch20 of the framework code

git checkout -b feature/[POD name] develop

This is the “beta test” version, used for testing changes before releasing them to end users

Developers may download the code from GitHub as described in ref-download, but we strongly recommend
that you clone the repo in order to keep up with changes in the develop branch, and to simplify submitting pull
requests with your POD’s code. Instructions for how to do this are given in Git-based development workflow
(page 28).

18 https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.NOAA-MDTF.html
19 http://data1.gfdl.noaa.gov/MDTF/
20 https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/develop

7

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.NOAA-MDTF.html
http://data1.gfdl.noaa.gov/MDTF/
https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/develop

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Installing dependencies via conda

Regardless of development language, we strongly recommend that developers use conda to manage their
language and library versions. Note that Conda is not Python-specific, but allows coexisting versioned envi-
ronments of most scripting languages, including, R21, NCL22, Ruby23, PyFerret24, and more.

We recommend that new PODs be written in Python 3. We provide a developer version of the python3_base
environment (described below) that includes Jupyter and other developer-specific tools. This is not installed
by default, and must be requested by passing the -all-dev flag to the conda setup script:

% cd $CODE_ROOT
% ./src/conda/conda_env_setup.sh --all-dev --conda_root $CONDA_ROOT --env_dir $CONDA_ENV_

↪DIR

1.4.2 POD development using existing Conda environments

To prevent the proliferation of dependencies, we suggest that new POD development use existing Conda
environments whenever possible, e.g., python3_base25, NCL_base26, and R_base27 for Python, NCL, and R,
respectively.

In case you need any exotic third-party libraries, e.g., a storm tracker, consult with the lead team and create
your own Conda environment following instructions (page 9) below.

Python

The framework provides the _MDTF_python3_base28 Conda environment (recall the _MDTF prefix for
framework-specific environment) as the generic Python environment, which you can install following the
instructions. You can then activate this environment by running in a terminal:

% source activate $CONDA_ENV_DIR/_MDTF_python3_base

where $CONDA_ENV_DIR is the path you used to install the Conda environments. After you’ve finished work-
ing under this environment, run % conda deactivate or simply close the terminal.

21 https://anaconda.org/conda-forge/r-base
22 https://anaconda.org/conda-forge/ncl
23 https://anaconda.org/conda-forge/ruby
24 https://anaconda.org/conda-forge/pyferret
25 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_python3_base.yml
26 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_NCL_base.yml
27 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_R_base.yml
28 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_pythone3_base.yml

8

https://anaconda.org/conda-forge/r-base
https://anaconda.org/conda-forge/ncl
https://anaconda.org/conda-forge/ruby
https://anaconda.org/conda-forge/pyferret
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_python3_base.yml
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_NCL_base.yml
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_R_base.yml
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_pythone3_base.yml

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Other languages

The framework also provides the _MDTF_NCL_base29 and _MDTF_R_base30 Conda environments as the
generic NCL and R environments.

1.4.3 POD development using a new Conda environment

If your POD requires languages that aren’t available in an existing environment or third-party libraries un-
available through the common conda-forge31 and anaconda32 channels, we ask that you notify us (since this
situation may be relevant to other developers) and submit a YAML (.yml) file33 that creates the environment
needed for your POD.

• The new YAML file should be added to src/conda/, where you can find templates for existing envi-
ronments from which you can create your own.

• The YAML filename should be env_$your_POD_short_name.yml.

• The first entry of the YAML file, name of the environment, should be
MDTF$your_POD_short_name.

• We recommend listing conda-forge as the first channel to search, as it’s entirely open source and has
the largest range of packages. Note that combining packages from different channels (in particular,
conda-forge and anaconda channels) may create incompatibilities.

• We recommend constructing the list of packages manually, by simply searching your POD’s code
for import statements referencing third-party libraries. Please do not exporting your development
environment with % conda env export, which gives platform-specific version information and will
not be fully portable in all cases; it also does so for every package in the environment, not just the
“top-level” ones you directly requested.

• We recommend specifying versions as little as possible, out of consideration for end-users: if each
POD specifies exact versions of all its dependencies, conda will need to install multiple versions of
the same libraries. In general, specifying a version should only be needed in cases where backward
compatibility was broken (e.g., Python 2 vs. 3) or a bug affecting your POD was fixed (e.g., postscript
font rendering on Mac OS with older NCL). Conda installs the latest version of each package that’s
consistent with all other dependencies.

29 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_NCL_base.yml
30 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_R_base.yml
31 https://conda-forge.org/feedstocks/
32 https://docs.anaconda.com/anaconda/packages/pkg-docs/
33 https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually

9

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_NCL_base.yml
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/develop/src/conda/env_R_base.yml
https://conda-forge.org/feedstocks/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Framework interaction with conda environments

As described in ref-execute, when you run the mdtf executable, among other things, it reads pod_list in
default_tests.jsonc and executes POD codes accordingly. For a POD included in the list (referred to
as $POD_NAME):

1. The framework will first try to look for the YAML file src/conda/env_$POD_NAME.yml. If it exists,
the framework will assume that the corresponding conda environment _MDTF_$POD_NAME has been
installed under $CONDA_ENV_DIR, and will switch to this environment and run the POD.

2. If not, the framework will then look into the POD’s settings.jsonc file in $CODE_ROOT/
diagnostics/$POD_NAME/. The runtime_requirements section in settings.jsonc specifies
the programming language(s) adopted by the POD:

a). If purely Python 3, the framework will look for src/conda/env_python3_base.yml and
check its content to determine whether the POD’s requirements are met, and then switch to
_MDTF_python3_base and run the POD.

b). Similarly, if NCL or R is used, then NCL_base or R_base.

Note that for the 6 existing PODs depending on NCL (EOF_500hPa, MJO_prop_amp, MJO_suite,
MJO_teleconnection, precip_diurnal_cycle, and Wheeler_Kiladis), Python is also used but merely as a wrap-
per. Thus the framework will switch to _MDTF_NCL_base when seeing both NCL and Python in settings.
jsonc.

The framework verifies PODs’ requirements via looking for the YAML files and their contents. Thus if you
choose to selectively install conda environments using the --env flag (ref-conda-env-install), remember to
install all the environments needed for the PODs you’re interested in, and that _MDTF_base is mandatory for
the framework’s operation.

• For instance, the minimal installation for running the EOF_500hPa and
convective_transition_diag PODs requres _MDTF_base (mandatory), _MDTF_NCL_base
(because of b), and _MDTF_convective_transition_diag (because of 1). These can be installed
by passing base, NCL_base, and convective_transition_diag to the --env flag one at a time
(ref-conda-env-install).

Testing with a new Conda environment

If you’ve updated an existing environment or created a new environment (with corresponding changes to the
YAML file), verify that your POD works.

Recall how the framework finds a proper Conda environment for a POD. First, it searches for an environment
matching the POD’s short name. If this fails, it then looks into the POD’s settings.jsonc and prepares a
generic environment depending on the language(s). Therefore, no additional steps are needed to specify the
environment if your new YAML file follows the naming conventions above (in case of a new environment)
or your settings.jsonc correctly lists the language(s) (in case of updating an existing environment).

• For an updated environment, first, uninstall it by deleting the corresponding directory under
$CONDA_ENV_DIR.

• Re-install the environment using the conda_env_setup.sh script as described in the installation
instructions, or create the new environment for you POD:

10

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

% cd $CODE_ROOT
% ./src/conda/conda_env_setup.sh --env $your_POD_short_name --conda_root

↪$CONDA_ROOT --env_dir $CONDA_ENV_DIR

• Have the framework run your POD on suitable test data.

1. Add your POD’s short name to the pod_list section of the configuration input file (template:
src/default_tests.jsonc).

2. Prepare the test data as described in start_config.

1.5 POD development guidelines

1.5.1 Admissible languages

The framework itself is written in Python, and can call PODs written in any scripting language. However,
Python support by the lead team will be “first among equals” in terms of priority for allocating developer
resources, etc.

• To achieve portability, the MDTF cannot accept PODs written in closed-source languages (e.g., MAT-
LAB and IDL; try Octave34 and GDL35 if possible). We also cannot accept PODs written in compiled
languages (e.g., C or Fortran): installation would rapidly become impractical if users had to check
compilation options for each POD.

• Python is strongly encouraged for new PODs; PODs funded through the CPO grant are requested to be
developed in Python. Python version >= 3.6 is required. Official support for Python 2 was discontinued
as of January 2020.

• If your POD was previously developed in NCL or R (and development is not funded through a CPO
grant), you do not need to re-write existing scripts in Python 3 if doing so is likely to introduce new
bugs into stable code, especially if you’re unfamiliar with Python.

• If scripts were written in closed-source languages, translation to Python 3.6 or above is required.

1.5.2 Preparation for POD implementation

We assume that, at this point, you have a set of scripts, written in languages consistent with the framework’s
open source policy, that a) read in model data, b) perform analysis, and c) output figures. Here are 3 steps to
prepare your scripts for POD implementation.

We recommend running the framework on the sample model data again with both save_ps and save_nc
in the configuration input src/default_tests.jsonc set to true. This will preserve directories and files
created by individual PODs in the output directory, which could come in handy when you go through the
instructions below, and help understand how a POD is expected to write output.

• Give your POD an official name (e.g., Convective Transition; referred to as long_name) and a short
name (e.g., convective_transition_diag). The latter will be used consistently to name the directories

34 https://www.gnu.org/software/octave/
35 https://github.com/gnudatalanguage/gdl

11

https://www.gnu.org/software/octave/
https://github.com/gnudatalanguage/gdl

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

and files associated with your POD, so it should (1) loosely resemble the long_name, (2) avoid space
bar and special characters (!@#$%^&*), and (3) not repeat existing PODs’ name (i.e., the directory
names under diagnostics/). Try to make your POD’s name specific enough that it will be distinct
from PODs contributed now or in the future by other groups working on similar phenomena.

• If you have multiple scripts, organize them so that there is a main driver script calling the other
scripts, i.e., a user only needs to execute the driver script to perform all read-in data, analy-
sis, and plotting tasks. This driver script should be named after the POD’s short name (e.g.,
convective_transition_diag.py).

• You should have no problem getting scripts working as long as you have (1) the location and filenames
of model data, (2) the model variable naming convention, and (3) where to output files/figures. The
framework will provide these as environment variables that you can access (e.g., using os.environ
in Python, or getenv in NCL). DO NOT hard code these paths/filenames/variable naming convention,
etc., into your scripts. See the complete list of environment variables supplied by the framework.

• Your scripts should not access the internet or other networked resources.

1.5.3 An example of using framework-provided environment variables

The framework provides a collection of environment variables, mostly in the format of strings but also some
numbers, so that you can and MUST use in your code to make your POD portable and reusable.

For instance, using 3 of the environment variables provided by the framework, CASENAME, DATADIR, and
pr_var, the full path to the hourly precipitation file can be expressed as

MODEL_OUTPUT_DIR = os.environ["DATADIR"]+"/1hr/"
pr_filename = os.environ["CASENAME"]+"."+os.environ["pr_var"]+".1hr.nc"
pr_filepath = MODEL_OUTPUT_DIR + pr_filename

You can then use pr_filepath in your code to load the precipitation data.

Note that in Linux shell or NCL, the values of environment variables are accessed via a $ sign, e.g., os.
environ["CASENAME"] in Python is equivalent to $CASENAME in Linux shell/NCL.

1.5.4 Relevant environment variables

The environment variables most relevant for a POD’s operation are:

• POD_HOME: Path to directory containing POD’s scripts, e.g., diagnostics/
convective_transition_diag/.

• OBS_DATA: Path to directory containing POD’s supporting/digested observation data, e.g.,
inputdata/obs_data/convective_transition_diag/.

• DATADIR: Path to directory containing model data files for one case/experiment, e.g., inputdata/
model/QBOi.EXP1.AMIP.001/.

• WK_DIR: Path to directory for POD to output files. Note that this is the only directory a
POD is allowed to write its output. E.g., wkdir/MDTF_QBOi.EXP1.AMIP.001_1977_1981/
convective_transition_diag/.

12

mailto:!@#\protect \TU\textdollar %\TU\textasciicircum {}&*
ref_envvars.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1. Output figures to $WK_DIR/obs/ and $WK_DIR/model/ respectively.

2. $WK_DIR/obs/PS/ and $WK_DIR/model/PS/: If a POD chooses to save vector-format figures,
save them as EPS under these two directories. Files in these locations will be converted by the
framework to PNG for HTML output. Caution: avoid using PS because of potential bugs in recent
matplotlib and converting to PNG.

3. $WK_DIR/obs/netCDF/ and $WK_DIR/model/netCDF/: If a POD chooses to save digested data
for later analysis/plotting, save them in these two directories in NetCDF.

Note that (1) values of POD_HOME, OBS_DATA, and WK_DIR change when the framework executes different
PODs; (2) the WK_DIR directory and subdirectories therein are automatically created by the framework. Each
POD should output files as described here so that the framework knows where to find what, and also for the
ease of code maintenance.

More environment variables for specifying model variable naming convention can be found in the src/
filedlist_$convention.jsonc files. Also see the list of environment variables supplied by the frame-
work.

1.5.5 Guidelines for testing your POD

Test before distribution. Find people (eg, nearby postdocs/grads and members from other POD-developing
groups) who are not involved in your POD’s implementation and are willing to help. Give the tar files and
point your GitHub repo to them. Ask them to try running the framework with your POD following the Getting
Started instructions. Ask for comments on whether they can understand the documentation.

Test how the POD fails. Does it stop with clear errors if it doesn’t find the files it needs? How about if the
dates requested are not presented in the model data? Can developers run it on data from another model?
Here are some simple tests you should try:

• Move the inputdata directory around. Your POD should still work by simply updating the values of
OBS_DATA_ROOT and MODEL_DATA_ROOT in the configuration input file.

• Try to run your POD with a different set of model data.

• If you have problems getting another set of data, try changing the files’ CASENAME and variable naming
convention. The POD should work by updating CASENAME and convention in the configuration input.

• Try your POD on a different machine. Check that your POD can work with reasonable machine con-
figuration and computation power, e.g., can run on a machine with 32 GB memory, and can finish
computation in 10 min. Will memory and run time become a problem if one tries your POD on model
output of high spatial resolution and temporal frequency (e.g., avoid memory problem by reading in
data in segments)? Does it depend on a particular version of a certain library? Consult the lead team
if there’s any unsolvable problems.

13

ref_envvars.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.5.6 Other tips on implementation

1. Structure of the code package: Implementing the constituent PODs in accordance with the structure
described in earlier sections makes it easy to pass the package (or just part of it) to other groups.

2. Robustness to model file/variable names: Each POD should be robust to modest changes in the
file/variable names of the model output; see Getting Started regarding the model data filename struc-
ture, An example of using framework-provided environment variables (page 12) and POD development
checklist (page 4) regarding using the environment variables and robustness tests. Also, it would be
easier to apply the code package to a broader range of model output.

3. Save digested data after analysis: Can be used, e.g., to save time when there is a substantial computa-
tion that can be re-used when re-running or re-plotting diagnostics. See Step 5: Output and cleanup
(page 22) regarding where to save the output.

4. Self-documenting: For maintenance and adaptation, to provide references on the scientific underpin-
nings, and for the code package to work out of the box without support. See POD development checklist
(page 4).

5. Handle large model data: The spatial resolution and temporal frequency of climate model output have
increased in recent years. As such, developers should take into account the size of model data compared
with the available memory. For instance, the example POD precip_diurnal_cycle and Wheeler_Kiladis
only analyze part of the available model output for a period specified by the environment variables
FIRSTYR and LASTYR, and the convective_transition_diag module reads in data in segments.

6. Basic vs. advanced diagnostics (within a POD): Separate parts of diagnostics, e.g, those might need
adjustment when model performance out of obs range.

7. Avoid special characters (!@#$%^&*) in file/script names.

See ref-execute and :doc:` framework operation walkthrough <dev_walkthrough>` for details on how the
package is called. See the command line reference for documentation on command line options (or run mdtf
--help).

Avoid making assumptions about the machine on which the framework will run beyond what’s listed here; a
development priority is to interface the framework with cluster and cloud job schedulers to enable individual
PODs to run in a concurrent, distributed manner.

1.6 POD settings file summary

This page gives a quick introduction to how to write the settings file for your POD. See the full documentation
(page 37) on this file format for a complete list of all the options you can specify.

14

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.6.1 Overview

The MDTF framework can be viewed as a “wrapper” for your code that handles data fetching and munging.
Your code communicates with this wrapper in two ways:

• The settings file is where your code talks to the framework: when you write your code, you document
what model data your code uses and what format it expects it in. When the framework is run, it will
fulfill the requests you make here (or tell the user what went wrong).

• When your code is run, the framework talks to it by setting environment variables (page 47) containing
paths to the data files and other information specific to the run.

In the settings file, you specify what model data your diagnostic uses in a vocabulary you’re already familiar
with:

• The CF conventions36 for standardized variable names and units.

• The netCDF4 (classic) data model, in particular the notions of variables37 and dimensions38 as they’re
used in a netCDF file.

1.6.2 Example

// Any text to the right of a '//' is a comment
{
"settings" : {
"long_name": "My example diagnostic",
"driver": "example_diagnostic.py",
"realm": "atmos",
"runtime_requirements": {
"python": ["numpy", "matplotlib", "netCDF4"]

}
},
"data" : {
"frequency": "day"

},
"dimensions": {
"lat": {
"standard_name": "latitude"

},
"lon": {
"standard_name": "longitude"

},
"plev": {
"standard_name": "air_pressure",
"units": "hPa",
"positive": "down"

},
"time": {

(continues on next page)

36 http://cfconventions.org/
37 https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcVars.html
38 https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html

15

http://cfconventions.org/
https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcVars.html
https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

(continued from previous page)
"standard_name": "time",
"units": "day"

}
},
"varlist" : {
"my_precip_data": {
"standard_name": "precipitation_flux",
"path_variable": "PATH_TO_PR_FILE",
"units": "kg m-2 s-1",
"dimensions" : ["time", "lat", "lon"]

},
"my_3d_u_data": {
"standard_name": "eastward_wind",
"path_variable": "PATH_TO_UA_FILE",
"units": "m s-1",
"dimensions" : ["time", "plev", "lat", "lon"]

}
}

}

1.6.3 Settings section

This is where you describe your diagnostic and list the programs it needs to run.

long_name: Display name of your diagnostic, used to describe your diagnostic on the top-level index.html
page. Can contain spaces.

driver: Filename of the driver script the framework should call to run your diagnostic.

realm: One or more of the eight CMIP6 modeling realms (aerosol, atmos, atmosChem, land, landIce, ocean,
ocnBgchem, seaIce) describing what data your diagnostic uses. This is give the user an easy way to,
eg, run only ocean diagnostics on data from an ocean model.

runtime_requirements: This is a list of key-value pairs describing the programs your diagnostic needs
to run, and any third-party libraries used by those programs.

• The key is program’s name, eg. languages such as “python39” or “ncl40” etc. but also any utilities
such as “ncks41”, “cdo42”, etc.

• The value for each program is a list of third-party libraries in that language that your diagnostic
needs. You do not need to list built-in libraries: eg, in python, you should to list numpy43 but not
math44. If no third-party libraries are needed, the value should be an empty list.

39 https://www.python.org/
40 https://www.ncl.ucar.edu/
41 http://nco.sourceforge.net/
42 https://code.mpimet.mpg.de/projects/cdo
43 https://numpy.org/
44 https://docs.python.org/3/library/math.html

16

https://www.python.org/
https://www.ncl.ucar.edu/
http://nco.sourceforge.net/
https://code.mpimet.mpg.de/projects/cdo
https://numpy.org/
https://docs.python.org/3/library/math.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.6.4 Data section

This section contains settings that apply to all the data your diagnostic uses. Most of them are optional.

frequency: The time frequency the model data should be provided at, eg. “1hr”, “6hr”, “day”, “mon”, …

1.6.5 Dimensions section

This section is where you list the dimensions (coordinate axes) your variables are provided on. Each entry
should be a key-value pair, where the key is the name your diagnostic uses for that dimension internally, and
the value is a list of settings describing that dimension. In order to be unambiguous, all dimensions must
specify at least:

standard_name: The CF standard name45 for that coordinate.

units: The units the diagnostic expects that coordinate to be in (using the syntax of the UDUnits library46).
This is optional: if not given, the framework will assume you want CF convention canonical units47.

In addition, any vertical (Z axis) dimension must specify:

positive: Either "up" or "down", according to the CF conventions48. A pressure axis is always "down"
(increasing values are closer to the center of the earth).

1.6.6 Varlist section

This section is where you list the variables your diagnostic uses. Each entry should be a key-value pair,
where the key is the name your diagnostic uses for that variable internally, and the value is a list of settings
describing that variable. Most settings here are optional, but the main ones are:

standard_name: The CF standard name49 for that variable.

path_variable: Name of the shell environment variable the framework will use to pass the location of the
file containing this variable to your diagnostic when it’s run. See the environment variable documen-
tation (page 47) for details.

units: The units the diagnostic expects the variable to be in (using the syntax of the UDUnits library50).
This is optional: if not given, the framework will assume you want CF convention canonical units51.

dimensions: List of names of dimensions specified in the “dimensions” section, to specify the coordinate
dependence of each variable.

45 http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
46 https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
47 http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
48 http://cfconventions.org/faq.html#vertical_coords_positive_attribute
49 http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
50 https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
51 http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html

17

http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
http://cfconventions.org/faq.html#vertical_coords_positive_attribute
http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.7 Walkthrough of framework operation

In this section, we describe the actions that are taken when the framework is run, focusing on aspects that are
relevant for the operation of individual PODs. The Example Diagnostic POD52 (short name: example) is
used as a concrete example here to illustrate how a POD is implemented and integrated into the framework.

We begin with a reminder that there are 2 essential files for the operation of the framework and POD:

• src/default_tests.jsonc: configuration input for the framework.

• diagnostics/example/settings.jsonc: settings file for the example POD.

1.7.1 Step 1: Framework invocation

The user runs the framework by executing the framework’s main driver script $CODE_ROOT/mdtf, rather
than executing the PODs directly. This is where the user specifies the model run to be analyzed, and chooses
which PODs to run via the pod_list section in default_tests.jsonc.

• Some of the configuration options can be input through command line, see the command line reference
or run % $CODE_ROOT/mdtf --help.

At this stage, the framework also creates the directory $OUTPUT_DIR/ (default: mdtf/wkdir/) and all sub-
directories therein for hosting the output files by the framework and PODs from each run.

• If you’ve run the framework with both save_ps and save_nc in default_tests.jsonc set to true,
check the output directory structure and files therein.

Note that when running, the framework will keep collecting the messages relevant to individual PODs, in-
cluding (1) the status of required data and environment, and (2) texts printed out by PODs during execution,
and will save them as log files under each POD’s output directory. These log files can be viewed via the

52 https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example

18

https://github.com/NOAA-GFDL/MDTF-diagnostics/tree/main/diagnostics/example

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

top-level results page index.html and, together with messages printed in the terminal, are useful for debug-
ging.

Example diagnostic

Run the framework using the NCAR-CAM5.timeslice case. After successful execution, open the index.
html under the output directory in a web browser. The plots links to the webpage produced by the example
POD with figures, and log to example.log including all example-related messages collected by the frame-
work. The messages displayed in the terminal are not identical to those in the log files, but also provide a
status update on the framework-POD operation.

1.7.2 Step 2: Data request

Each POD describes the model data it requires as input in the varlist section of its settings.jsonc, with
each entry in varlist corresponding to one model data file used by the POD. The framework goes through
all the PODs to be run in pod_list and assembles a list of required model data from their varlist. It
then queries the source of the model data ($DATADIR/) for the presence of each requested variable with the
requested characteristics (e.g., frequency, units, etc.).

• The most important features of settings.jsonc are described in the settings documentation
(page 14) and full detail on the reference page (page 37).

• Variables are specified in varlist following CF convention53 wherever possible. If your POD requires
derived quantities that are not part of the standard model output (e.g., column weighted averages),
incorporate necessary preprocessing for computing these from standard output variables into your
code. PODs are allowed to request variables outside of the CF conventions (by requiring an exact
match on the variable name), but this will severely limit the POD’s application.

• Some of the requested variables may be unavailable or without the requested characteristics (e.g., fre-
quency). You can specify a backup plan for this situation by designating sets of variables as alternates
if feasible: when the framework is unable to obtain a variable that has the alternates attribute in
varlist, it will then (and only then) query the model data source for the variables named as alternates.

• If no alternates are defined or the alternate variables are also unavailable, the framework will skip
executing your POD, and an error log will be presented in index.html.

Once the framework has determined which PODs are able to run given the model data, it prepares the nec-
essary environment variables, including directory paths and the requested variable names (as defined in
src/filedlist_$convention.jsonc) for PODs’ operation.

• At this step, the framework also checks the PODs’ observational/supporting data under inputdata/
obs_data/. If the directory of any of the PODs in pod_list is missing, the framework would termi-
nate with error messages showing on the terminal. Note that the framework only checks the presence
of the directory, but not the files therein.

53 http://cfconventions.org/

19

http://cfconventions.org/

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Example diagnostic

The example POD uses only one model variable in its varlist54: surface air temperature, recorded at monthly
frequency.

• In the beginning of example.log, the framework reports finding the requested model data file under
Found files.

• If the framework could not locate the file, the log would instead record Skipping execution with
the reason being missing data.

1.7.3 Step 3: Runtime environment configuration

The framework reads the other parts of your POD’s settings.jsonc, e.g., pod_env_vars, and gener-
ates additional environment variables accordingly (on top of those being defined through default_tests.
jsonc).

Furthermore, in the runtime_requirements section of settings.jsonc, we request that you provide a
list of languages and third-party libraries your POD uses. The framework will check that all these require-
ments are met by one of the Conda environments under $CONDA_ENV_DIR/.

• The requirements should be satisfied by one of the existing generic Conda environments (updated by
you if necessary), or a new environment you created specifically for your POD.

• If there isn’t a suitable environment, the POD will be skipped.

Note that the framework’s information about the Conda environments all comes from the YMAL (.yml) files
under src/conda/ (and their contents) by assuming that the corresponding Conda environments have been
installed using (thus are consistent with) the YAML files.

• The framework doesn’t directly check files under $CONDA_ENV_DIR/, where the Conda environments
locate.

• Therefore, it’s imperative that you keep the Conda environments and the YAML files consistent at all
time so the framework can properly function.

Example diagnostic

In its settings.jsonc, the example POD lists its requirements55: Python 3, and the matplotlib, xarray and
netCDF4 third-party libraries for Python. In this case, the framework assigns the POD to run in the generic
python3_base56 environment provided by the framework.

• In example.log, under Env vars: is a comprehensive list of environment variables prepared for
the POD by the framework. A great part of them are defined as in src/fieldlist_CMIP.jsonc57 via
setting convention in default_tests.jsonc to CMIP. Some of the environment variables are POD-
specific as defined under pod_env_vars58 in the POD’s settings.jsonc, e.g., EXAMPLE_FAV_COLOR.

54 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L46
55 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L38
56 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/conda/env_python3_base.yml
57 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/fieldlist_CMIP.jsonc
58 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L29

20

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L46
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L38
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/conda/env_python3_base.yml
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/fieldlist_CMIP.jsonc
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/settings.jsonc#L29

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• In example.log, after --- MDTF.py calling POD example, the framework verifies the Conda-
related paths, and makes sure that the runtime_requirements in settings.jsonc are met by the
python3_base environment via checking env_python3_base.yml59.

1.7.4 Step 4: POD execution

At this point, your POD’s requirements have been met, and the environment variables are set. The framework
then activates the right Conda environment, and begins execution of your POD’s code by calling the top-level
driver script listed in its settings.jsonc.

• See Relevant environment variables (page 12) for most relevant environment variables, and how your
POD is expected to output results.

• All information passed from the framework to your POD is in the form of Unix/Linux shell environment
variables; see reference for a complete list of environment variables (another good source is the log
files for individual PODs).

• For debugging, we encourage that your POD print out messages of its progress as it runs. All text
written to stdout or stderr (i.e., displayed in a terminal) will be captured by the framework and added
to a log file available to the users via index.html.

• Properly structure your code/scripts and include error and exception handling mechanisms so that
simple issues will not completely shut down the POD’s operation. Here are a few suggestions:

A. Separate basic and advanced diagnostics. Certain computations (e.g., fitting) may need adjust-
ment or are more likely to fail when model performance out of observed range. Organize your
POD scripts so that the basic part can produce results even when the advanced part fails.

B. If some of the observational data files are missing by accident, the POD should still be able to
run analysis and produce figures for model data regardless.

C. Say a POD reads in multiple variable files and computes statistics for individual variables. If some
of the files are missing or corrupted, the POD should still produce results for the rest (note that
the framework would skip this POD due to missing data, but PODs should have this robustness
property for ease of workarounds or running outside the framework).

• The framework contains additional exception handling so that if a POD experiences a fatal or unrecov-
erable error, the rest of the tasks and POD-calls by the framework can continue. The error messages,
if any, will be included in the POD’s log file.

In case your POD requires derived quantities that are not part of the standard model output, and you’ve incor-
porated necessary preprocessing into your code (e.g., compute column average temperature from a vertically-
resolved temperature field), one might be interested in saving these derived quantities as intermediate output
for later use, and you may include this functionality in your code.

• Here we are referring to derived quantities gridded in a similar way to model output, instead of highly-
digested data that is just enough for making figures.

• Save these as NetCDF files to the same directory containing the original model files. One file for one
variable, following the filename convention spelled out in Getting Started.

59 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/conda/env_python3_base.yml

21

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/src/conda/env_python3_base.yml
ref_envvars.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• You must provide an option so that users can choose not to save the files (e.g., because of write per-
mission, disk space, or files are accessed via soft links). Include this option through pod_env_vars
in your POD’s settings.jsonc, with “not to save” as default. You can remind users about this
option by printing out messages in the terminal during runtime, or include a reminder in your POD
documentation.

Example diagnostic

The framework activates the _MDTF_python3_baseConda environment, and calls the driver script example-
diag.py60 listed in settings.jsonc. Take a look at the script and the comments therein.

example-diag.py performs tasks roughly in the following order:

1) It reads the model surface air temperature data at input_path,

2) computes the model time average,

3) saves the model time averages to $WK_DIR/model/netCDF/temp_means.nc for later use,

4) plots model figure $WK_DIR/model/PS/example_model_plot.eps,

5) reads the digested data in time-averaged form at $OBS_DATA/example_tas_means.nc, and plots the
figure to $WK_DIR/obs/PS/example_obs_plot.eps.

Note that these tasks correspond to the code blocks 1) through 5) in the script.

• When the script is called and running, it prints out messages which are saved in example.log. These
are helpful to determine when and how the POD execution is interrupted if there’s a problem.

• The script is organized to deal with model data first, and then to process digested observations. Thus
if something goes wrong with the digested data, the script is still able to produce the html page with
model figures. This won’t happen if code block 5) is moved before 4), i.e., well-organized code is more
robust and may be able to produce partial results even when it encounters problems.

In code block 7) of example-diag.py, we include an example of exception handling by trying to access
a non-existent file (the final block is just to confirm that the error would not interrupt the script’s execution
because of exception-handling).

• The last few lines of example.log demonstrate the script is able to finish execution despite an error
having occurred. Exception handling makes code robust.

1.7.5 Step 5: Output and cleanup

At this point, your POD has successfully finished running, and all remaining tasks are handled by the frame-
work. The framework converts the postscript plots to bitmaps according to the following rule:

• $WK_DIR/model/PS/filename.eps → $WK_DIR/model/filename.png

• $WK_DIR/obs/PS/filename.eps → $WK_DIR/obs/filename.png

The html template for each POD is then copied to $WK_DIR by the framework.
60 https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/example_diag.py

22

https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/example_diag.py
https://github.com/NOAA-GFDL/MDTF-diagnostics/blob/main/diagnostics/example/example_diag.py

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• In writing the template file all plots should be referenced as relative links to this location, e.g., “”. See templates from existing PODs.

• Values of all environment variables referenced in the html template are substituted by the framework,
allowing you to show the run’s CASENAME, date range, etc. Text you’d like to change at runtime must
be changed through environment variables (the v3 framework doesn’t allow other ways to alter the text
of your POD’s output webpage at runtime).

• If save_ps and save_nc are set to false, the .eps and .nc files will be deleted.

Finally, the framework links your POD’s html page to the top-level index.html, and copies all files to the
specified output location (OUTPUT_DIR in default_tests.jsonc; same as WK_DIR by default).

• If make_variab_tar in default_tests.jsonc is set to true, the framework will create a tar file
for the output directory, in case you’re working on a server, and have to move the file to a local machine
before viewing it.

Example diagnostic

Open the html template diagnostics/example/example.html and the output $WK_DIR/example.html
in a text editor, and compare. All the environment variables in the template have been substituted, e.g.,
{EXAMPLE_FAV_COLOR} becomes blue (defined in pod_env_vars in settings.jsonc).

1.8 POD coding best practices

In this section we describe issues we’ve seen in POD code that have caused problems in the form of bugs,
inefficiencies, or unintended consequences.

1.8.1 All languages

• PS vs. EPS figures: Save vector plots as .eps (Encapsulated PostScript), not .ps (regular PostScript).

Why: Postscript (.ps) is perhaps the most common vector graphics format, and almost all plotting
packages are able to output postscript files. Encapsulated Postscript61 (.eps) includes bounding box
information that describes the physical extent of the plot’s contents. This is used by the framework to
generate bitmap versions of the plots correctly: the framework calls ghostscript62 for the conversion,
and if not provided with a bounding box ghostscript assumes the graphics use an entire sheet of (letter
or A4) paper. This can cause plots to be cut off if they extend outside of this region.

Note that many plotting libraries will set the format of the output file automatically from the filename
extension. The framework will process both *.ps and *.eps files.

61 https://en.wikipedia.org/wiki/Encapsulated_PostScript
62 https://www.ghostscript.com/

23

https://en.wikipedia.org/wiki/Encapsulated_PostScript
https://www.ghostscript.com/

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.8.2 Python: General

• Whitespace: Indent python code with four spaces per indent level.

Why: Python uses indentation to delineate nesting and scope within a program, and indentation that’s
not done consistently is a syntax error. Using four spaces is not required, but is the generally accepted
standard.

Indentation can be configured in most text editors, or fixed with scripts such as reindent.py described
here63. We recommend using a linter64 such as pylint to find common bugs and syntax errors.

Beyond this, we don’t impose requirements on how your code is formatted, but voluntarily following
standard best practices (such as described in PEP865 or the Google style guide66) will make it easier
for you and others to understand your code, find bugs, etc.

• Filesystem commands: Use commands in the os67 and shutil68 modules to interact with the filesys-
tem, instead of running unix commands using os.system(), commands (which is deprecated), or
subprocess.

Why: Hard-coding unix commands makes code less portable. Calling out to a subprocess introduces
overhead and makes error handling and logging more difficult. The main reason, however, is that
Python already provides these tools in a portable way. Please see the documentation for the os69 and
shutil70 modules, summarized in this table:

Table 2: Recommended python functions for filesystem interaction
Task Recommended function
Construct a path from dir1, dir2, …, filename os.path.join71(dir1, dir2, …, filename)
Split a path into directory and filename os.path.split72(path) and related functions in

os.path73

List files in directory dir os.scandir74(dir)
Move or rename a file or directory from old_path to
new_path

shutil.move75(old_path, new_path)

Create a directory or sequence of directories dir os.makedirs76(dir)
Copy a file from path to new_path shutil.copy277(path, new_path)
Copy a directory dir, and everything inside it, to
new_dir

shutil.copytree78(dir, new_dir)

Delete a single file at path os.remove79(path)
Delete a directory dir and everything inside it shutil.rmtree80(dir)

63 https://stackoverflow.com/q/1024435
64 https://books.agiliq.com/projects/essential-python-tools/en/latest/linters.html
65 https://www.python.org/dev/peps/pep-0008/
66 https://github.com/google/styleguide/blob/gh-pages/pyguide.md
67 https://docs.python.org/3.7/library/os.html
68 https://docs.python.org/3.7/library/shutil.html
69 https://docs.python.org/3.7/library/os.html
70 https://docs.python.org/3.7/library/shutil.html

24

https://stackoverflow.com/q/1024435
https://books.agiliq.com/projects/essential-python-tools/en/latest/linters.html
https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide/blob/gh-pages/pyguide.md
https://docs.python.org/3.7/library/os.html
https://docs.python.org/3.7/library/shutil.html
https://docs.python.org/3.7/library/os.html
https://docs.python.org/3.7/library/shutil.html
https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.join
https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.split
https://docs.python.org/3.7/library/os.path.html?highlight=os%20path
https://docs.python.org/3.7/library/os.html#os.scandir
https://docs.python.org/3.7/library/shutil.html#shutil.move
https://docs.python.org/3.7/library/os.html#os.makedirs
https://docs.python.org/3.7/library/shutil.html#shutil.copy2
https://docs.python.org/3.7/library/shutil.html#shutil.copytree
https://docs.python.org/3.7/library/os.html#os.remove
https://docs.python.org/3.7/library/shutil.html#shutil.rmtree

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

In particular, using os.path.join81 is more verbose than joining strings but eliminates bugs arising from
missing or redundant directory separators.

1.8.3 Python: Arrays

To obtain acceptable performance for numerical computation, people use Python interfaces to optimized,
compiled code. NumPy82 is the standard module for manipulating numerical arrays in Python. xarray83 sits
on top of NumPy and provides a higher-level interface to its functionality; any advice about NumPy applies
to it as well.

NumPy and xarray both have extensive documentation and many tutorials, such as:

• NumPy’s own basic84 and intermediate85 tutorials; xarray’s overview86 and climate and weather ex-
amples87;

• A demonstration88 of the features of xarray using earth science data;

• The 2020 SciPy conference has open-source, interactive tutorials89 you can work through on your own
machine or fully online using Binder90. In particular, there are tutorials for NumPy91 and xarray92.

• Eliminate explicit for loops: Use NumPy/xarray functions instead of writing for loops in Python that
loop over the indices of your data array. In particular, nested for loops on multidimensional data should
never need to be used.

Why: For loops in Python are very slow compared to C or Fortran, because Python is an interpreted
language. You can think of the NumPy functions as someone writing those for-loops for you in C, and
giving you a way to call it as a Python function.

It’s beyond the scope of this document to cover all possible situations, since this is the main use case
for NumPy. We refer to the tutorials above for instructions, and to the following blog posts that discuss
this specific issue:

71 https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.join
72 https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.split
73 https://docs.python.org/3.7/library/os.path.html?highlight=os%20path
74 https://docs.python.org/3.7/library/os.html#os.scandir
75 https://docs.python.org/3.7/library/shutil.html#shutil.move
76 https://docs.python.org/3.7/library/os.html#os.makedirs
77 https://docs.python.org/3.7/library/shutil.html#shutil.copy2
78 https://docs.python.org/3.7/library/shutil.html#shutil.copytree
79 https://docs.python.org/3.7/library/os.html#os.remove
80 https://docs.python.org/3.7/library/shutil.html#shutil.rmtree
81 https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.join
82 https://numpy.org/doc/stable/index.html
83 http://xarray.pydata.org/en/stable/index.html
84 https://numpy.org/doc/stable/user/absolute_beginners.html
85 https://numpy.org/doc/stable/user/quickstart.html
86 http://xarray.pydata.org/en/stable/quick-overview.html
87 http://xarray.pydata.org/en/stable/examples.html
88 https://rabernat.github.io/research_computing/xarray.html
89 https://www.scipy2020.scipy.org/tutorial-information
90 https://mybinder.org/
91 https://github.com/enthought/Numpy-Tutorial-SciPyConf-2020
92 https://xarray-contrib.github.io/xarray-tutorial/index.html

25

https://docs.python.org/3.7/library/os.path.html?highlight=os%20path#os.path.join
https://numpy.org/doc/stable/index.html
http://xarray.pydata.org/en/stable/index.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/quickstart.html
http://xarray.pydata.org/en/stable/quick-overview.html
http://xarray.pydata.org/en/stable/examples.html
http://xarray.pydata.org/en/stable/examples.html
https://rabernat.github.io/research_computing/xarray.html
https://www.scipy2020.scipy.org/tutorial-information
https://mybinder.org/
https://github.com/enthought/Numpy-Tutorial-SciPyConf-2020
https://xarray-contrib.github.io/xarray-tutorial/index.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

– “Look Ma, no for-loops93,” by Brad Solomon;

– “Turn your conditional loops to Numpy vectors94,” by Tirthajyoti Sarkar;

– “’Vectorized’ Operations: Optimized Computations on NumPy Arrays95”, part of “Python like
you mean it96,” a free resource by Ryan Soklaski.

• Use xarray with netCDF data:

Why: This is xarray’s use case. You can think of NumPy as implementing multidimensional matrices
in the fully general, mathematical sense, and xarray providing the specialization to the case where the
matrix contains data on a lat-lon-time-(etc.) grid.

xarray lets you refer to your data with human-readable labels such as ‘latitude,’ rather than having to
remember that that’s the second dimension of your array. This bookkeeping is essential when writing
code for the MDTF framework, when your POD will be run on data from models you haven’t been
able to test on.

In particular, xarray provides seamless support for time axes97, with support98 for all CF convention
calendars through the cftime library. You can, eg, subset a range of data between two dates without
having to manually convert those dates to array indices.

See the xarray tutorials linked above for more examples of xarray’s features.

• Memory use and views vs. copies: Use scalar indexing and slices99 (index specifications of the form
start_index:stop_index:stride) to get subsets of arrays whenever possible, and only use advanced in-
dexing100 features (indexing arrays with other arrays) when necessary.

Why: When advanced indexing is used, NumPy will need to create a new copy of the array in mem-
ory, which can hurt performance if the array contains a large amount of data. By contrast, slicing or
basic indexing is done in-place, without allocating a new array: the NumPy documentation calls this
a “view.”

Note that array slices are native Python objects101, so you can define a slice in a different place from
the array you intend to use it on. Both NumPy and xarray arrays recognize slice objects.

This is easier to understand if you think about NumPy as a wrapper around C-like functions: array
indexing in C is implemented with pointer arithmetic, since the array is implemented as a contiguous
block of memory. An array slice is just a pointer to the same block of memory, but with different
offsets. More complex indexing isn’t guaranteed to follow a regular pattern, so NumPy needs to copy
the requested data in that case.

See the following references for more information:

– The NumPy documentation102 on indexing;
93 https://realpython.com/numpy-array-programming/
94 https://towardsdatascience.com/data-science-with-python-turn-your-conditional-loops-to-numpy-vectors-9484ff9c622e
95 https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/VectorizedOperations.html
96 https://www.pythonlikeyoumeanit.com/
97 http://xarray.pydata.org/en/stable/time-series.html
98 http://xarray.pydata.org/en/stable/weather-climate.html
99 https://numpy.org/doc/stable/reference/arrays.indexing.html#basic-slicing-and-indexing

100 https://numpy.org/doc/stable/reference/arrays.indexing.html#advanced-indexing
101 https://docs.python.org/3.7/library/functions.html?highlight=slice#slice
102 https://numpy.org/doc/stable/reference/arrays.indexing.html

26

https://realpython.com/numpy-array-programming/
https://towardsdatascience.com/data-science-with-python-turn-your-conditional-loops-to-numpy-vectors-9484ff9c622e
https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/VectorizedOperations.html
https://www.pythonlikeyoumeanit.com/
https://www.pythonlikeyoumeanit.com/
http://xarray.pydata.org/en/stable/time-series.html
http://xarray.pydata.org/en/stable/weather-climate.html
https://numpy.org/doc/stable/reference/arrays.indexing.html#basic-slicing-and-indexing
https://numpy.org/doc/stable/reference/arrays.indexing.html#advanced-indexing
https://numpy.org/doc/stable/reference/arrays.indexing.html#advanced-indexing
https://docs.python.org/3.7/library/functions.html?highlight=slice#slice
https://numpy.org/doc/stable/reference/arrays.indexing.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

– “Numpy Views vs Copies: Avoiding Costly Mistakes103,” by Jessica Yung;

– “How can I tell if NumPy creates a view or a copy?104” on stackoverflow.

• MaskedArrays instead of NaNs or sentinel values: Use NumPy’s MaskedArrays105 for data that may
contain missing or invalid values, instead of setting those entries to NaN or a sentinel value.

Why: One sometimes encounters code which sets array entries to fixed “sentinel values” (such as
1.0e+20 or NaN106) to indicate missing or invalid data. This is a dangerous and error-prone practice,
since it’s frequently not possible to detect if the invalid entries are being used by mistake. For exam-
ple, computing the variance of a timeseries with missing elements set to 1e+20 will either result in a
floating-point overflow, or return zero.

NumPy provides a better solution in the form of MaskedArrays107, which behave identically to regular
arrays but carry an extra boolean mask to indicate valid/invalid status. All the NumPy mathematical
functions will automatically use this mask for error propagation. For example108, trying to divide an
array element by zero or taking the square root of a negative element will mask it off, indicating that
the value is invalid: you don’t need to remember to do these sorts of checks explicitly.

1.8.4 Python: Plotting

• Use the ‘Agg’ backend when testing your POD: For reproducibility, set the shell environment variable
MPLBACKEND to Agg when testing your POD outside of the framework.

Why: Matplotlib can use a variety of backends109: interfaces to low-level graphics libraries. Some of
these are platform-dependent, or require additional libraries that the MDTF framework doesn’t install.
In order to achieve cross-platform portability and reproducibility, the framework specifies the 'Agg'
non-interactive (ie, writing files only) backend for all PODs, by setting the MPLBACKEND environment
variable.

When developing your POD, you’ll want an interactive backend – for example, this is automatically
set up for you in a Jupyter notebook. When it comes to testing your POD outside of the framework,
however, you should be aware of this backend difference.

1.8.5 NCL

• Deprecated calendar functions: Check the function reference110 to verify that the functions you use
are not deprecated in the current version of NCL111. This is especially necessary for date/calendar
functions112.

103 https://www.jessicayung.com/numpy-views-vs-copies-avoiding-costly-mistakes/
104 https://stackoverflow.com/questions/11524664/how-can-i-tell-if-numpy-creates-a-view-or-a-copy
105 https://numpy.org/doc/stable/reference/maskedarray.generic.html
106 https://en.wikipedia.org/wiki/NaN
107 https://numpy.org/doc/stable/reference/maskedarray.html
108 https://numpy.org/doc/stable/reference/maskedarray.generic.html#numerical-operations
109 https://matplotlib.org/tutorials/introductory/usage.html#backends
110 https://www.ncl.ucar.edu/Document/Functions/index.shtml
111 https://www.ncl.ucar.edu/
112 https://www.ncl.ucar.edu/Document/Functions/date.shtml

27

https://www.jessicayung.com/numpy-views-vs-copies-avoiding-costly-mistakes/
https://stackoverflow.com/questions/11524664/how-can-i-tell-if-numpy-creates-a-view-or-a-copy
https://numpy.org/doc/stable/reference/maskedarray.generic.html
https://en.wikipedia.org/wiki/NaN
https://numpy.org/doc/stable/reference/maskedarray.html
https://numpy.org/doc/stable/reference/maskedarray.generic.html#numerical-operations
https://matplotlib.org/tutorials/introductory/usage.html#backends
https://www.ncl.ucar.edu/Document/Functions/index.shtml
https://www.ncl.ucar.edu/
https://www.ncl.ucar.edu/Document/Functions/date.shtml
https://www.ncl.ucar.edu/Document/Functions/date.shtml

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Why: The framework uses a current version of NCL113 (6.6.x), to avoid plotting bugs that were
present in earlier versions. This is especially relevant for calendar functions: the ut_* set of func-
tions have been deprecated in favor of counterparts beginning with cd_ that take identical arguments
(so code can be updated using find/replace). For example, use cd_calendar114 instead of the deprecated
ut_calendar115.

This change is necessary because only the cd_* functions support all calendars defined in the CF
conventions, which is needed to process data from some models (eg, weather or seasonal models are
typically run with a Julian calendar.)

1.9 Git-based development workflow

1.9.1 Steps for brand new users:

1. Fork the MDTF-diagnostics branch to your GitHub account (Creating a fork of the MDTF-diagnostics
repository (page 29))

2. Clone (Cloning a repository onto your machine (page 29)) your fork of the MDTF-diagnostics repos-
itory (repo) to your local machine (if you are not using the web interface for development)

3. Check out a new branch from the local develop branch (Working on a brand new feature (page 30))

4. Start coding

5. Commit the changes in your feature branch (Working on a brand new feature (page 30))

6. Push the changes to the copy of the feature branch on your remote fork (Working on a brand new feature
(page 30))

7. Repeat steps 4–6 until you are finished working

8. Submit a pull request to the NOAA-GFDL repo for review (Submitting Pull Requests (page 31)).

1.9.2 Steps for users continuing work on an existing feature branch

1. Create a backup copy of the MDTF-Diagnostics repo on your local machine

2. Pull in updates from the NOAA-GFDL/develop branch to the develop branch in your remote repo
(Updating your remote and local develop branches (page 31))

3. Pull in updates from develop branch in your remote fork into the develop branch in your local repo
(Updating your remote and local develop branches (page 31))

4. Sync your feature branch in your local repository with the local develop branch using an interac-
tive rebase (Updating your feature branch by rebasing it onto the develop branch (preferred method)
(page 32)) or merge (Updating your feature branch by merging in changes from the develop branch
(page 33)). Be sure to make a backup copy of of your local MDTF-diagnostics repo first, and test your

113 https://www.ncl.ucar.edu/
114 https://www.ncl.ucar.edu/Document/Functions/Built-in/cd_calendar.shtml
115 https://www.ncl.ucar.edu/Document/Functions/Built-in/ut_calendar.shtml

28

https://www.ncl.ucar.edu/
https://www.ncl.ucar.edu/Document/Functions/Built-in/cd_calendar.shtml
https://www.ncl.ucar.edu/Document/Functions/Built-in/ut_calendar.shtml

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

branch after rebasing/merging as described in the linked instructions before proceeding to the next
step.

5. Continue working on your feature branch

6. Commit the changes in your feature branch

7. Push the changes to the copy of the feature branch in your remote fork (Pushing to your remote feature
branch on your fork (page 30))

8. Submit a pull request (PR) to NOAA-GFDL/develop branch when your code is ready for review (Sub-
mitting Pull Requests (page 31))

1.9.3 Creating a fork of theMDTF-diagnostics repository

• If you have no prior experience with GitHub116, create an account first.

• Create a fork of the project by clicking the Fork button in the upper-right corner of NOAA’s MDTF
GitHub page117. This will create a copy (also known as repository, or simply repo) in your own GitHub
account which you have full control over.

1.9.4 Cloning a repository onto yourmachine

Before following the instructions below, make sure that a) you’ve created a fork of the project, and b) the git
command is available on your machine (installation instructions118).

• Clone your fork onto your computer: git clone git@github.com:<your_github_account>/
MDTF-diagnostics.git. This not only downloads the files, but due to the magic of git also gives
you the full commit history of all branches.

• Enter the project directory: cd MDTF-diagnostics.

• Clone additional dependencies of the code: git submodule update --recursive --init.

• Git knows about your fork, but you need to tell it about NOAA’s repo if you wish to contribute
changes back to the code base. To do this, type git remote add upstream git@github.
com:NOAA-GFDL/MDTF-diagnostics.git. Now you have two remote repos: origin, your GitHub
fork which you can read and write to, and upstream, NOAA’s code base which you can only read
from.

Another approach is to create a local repo on your machine and manage the code using the git command in
a terminal. In the interests of making things self-contained, the rest of this section gives brief step-by-step
instructions on git for interested developers.

116 https://github.com/
117 https://github.com/NOAA-GFDL/MDTF-diagnostics
118 https://git-scm.com/download/

29

https://github.com/
https://github.com/NOAA-GFDL/MDTF-diagnostics
https://github.com/NOAA-GFDL/MDTF-diagnostics
https://git-scm.com/download/

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.9.5 Working on a brand new feature

Developers can either clone the MDTF-diagnostics repo to their computer, or manage the MDTF package
using the GitHub webpage interface. Whichever method you choose, remember to create your feature/[POD
name] branch from the develop branch, not the main branch. Since developers commonly work on their own
machines, this manual provides command line instructions.

1. Check out a branch for your POD from the develop branch

git checkout -b feature/[POD name] develop

2. Write code, add files, etc…

3. Add the files you created and/or modified to the staging area

git add [file 1]
git add [file 2]
...

4. Commit your changes, including a brief description

git commit -m "description of my changes"

5. Push the updates to your remote repository

git push -u origin feature/[POD name]

1.9.6 Pushing to your remote feature branch on your fork

When you are ready to push your updates to the remote feature branch on your fork

1. type git status to list the file(s) that have been updated

2. type git add <file> to add individual files, or git add --all to add all files, that have been
updated to the staging area

3. Commit the changes with git commit -m "your commit message". You can also type git
commit to launch an editor in the terminal where you can enter your message.

If you use the editor or BASH shell, you can easily break up your message over multiple lines for better
readability.

4. Push the updates to your fork: git push -u origin feature/[POD name] (The -u flag is for
creating a new branch remotely and only needs to be used the first time.)

30

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

1.9.7 Submitting Pull Requests

A Pull Request (PR) is your proposal to the maintainers to incorporate your feature into NOAA’s repo. When
your feature is ready, submit a PR by going to the GitHub page of your fork and clicking on Pull request to
the right of the branch description. Make sure you are submitting the PR to NOAA-GFDL/develop. Enter
a brief description for the PR, and check the boxes in the to-do list for the completed tasks. If you are still
working on your POD, but want to test it with the CI, you can select the Create Draft Pull Request option
from the dropdown menu by clicking the green button with the arrow to the right of the Create Pull Request
Button.

Your changes will not affect the official NOAA’s repo until the PR is accepted by the lead-team programmer.

Note that if any buttons are missing, try CRTL + + or CRTL + - to adjust the webpage font size so the missing
buttons may magically appear.

1.9.8 Updating your remote and local develop branches

Method 1: Web interface+command line

See the MDTF Best Practices Overview119 presentation for instructions with figures.

1. Click the Pull request link on the main page of your MDTF-diagnostics fork

2. Select your fork as the base repository, and develop as the base branch

3. Select compare across forks to switch the head repository to NOAA-GFDL

4. Set NOAA-GFDL as the head repository, and develop as the head branch

5. Add a brief description to the PR header, and click Create pull request

6. Click Merge pull request.

Your remote develop branch is now up-to-date with the NOAA-GFDL/develop branch.

7. On your machine, open a terminal and check out the develop branch

git checkout develop

8. Fetch the updates to the develop branch from your remote fork

git fetch

9. Pull in the updates from the remote develop branch.

git pull

Your local develop branch is now up-to-date with the NOAA-GFDL/develop branch.
119 https://docs.google.com/presentation/d/18jbi50vC9X89vFbL0W1Ska1dKuW_yWY51SomWx_ahYE/edit?usp=sharing

31

https://docs.google.com/presentation/d/18jbi50vC9X89vFbL0W1Ska1dKuW_yWY51SomWx_ahYE/edit?usp=sharing

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

Method 2: Command line only

This method requires adding the NOAA-GFDL/MDTF-diagnostics repo to the .git/config file in your local
repo, and is described in the GitHub discussion post Working with multiple remote repositories in your git
config file120.

1.9.9 Updating your feature branchby rebasing it onto the developbranch (preferred
method)

Rebasing is procedure to integrate the changes from one branch into another branch. git rebase differs
from git merge in that it reorders the commit history so that commits from the branch that is being updated
are moved to the tip of the branch. This makes it easier to isolate changes in the feature branch, and usually
results in fewer merge conflicts when the feature branch is merged into the develop branch. 1. Create a
backup copy of your MDTF-diagnostics repo on your local machine

2. Update the local and remote develop branches on your fork as described in Updating your remote and
local develop branches (page 31), then check out your feature branch

git checkout feature/[POD name]

and launch an interactive rebase of your branch onto the develop branch:: git rebase -i develop 3. Your text
editor will open in the terminal (Vim by default) and display your commit hashes with the oldest commit at
the top

pick 39n3b42 oldest commit
pick 320cnyn older commit
pick 20ac93c newest commit

You may squash commits by replacing pick with squash for the commit(s) that are newer than the commit
you want to combine with (i.e., the commits below the target commit). For example

pick 39n3b42 oldest commit
squash 320cnyn older commit
pick 20ac93c newest commit

combines commit 320cnyn with commit 29n3b42, while

pick 39n3b42 oldest commit
squash 320cnyn older commit
squash 20ac93c newest commit

combines 20ac93c and 320cnyn with 39n3b42.

Note that squashing commits is not required. However, doing so creates a more streamlined commit history.

4. Once you’re done squashing commits (if you chose to do so), save your changes and close the editor ESC
+ SHIFT + wq to save and quit in Vim), and the rebase will launch. If the rebase stops because there are
merge conflicts and resolve the conflicts. To show the files with merge conflicts, type

120 https://github.com/NOAA-GFDL/MDTF-diagnostics/discussions/96

32

https://github.com/NOAA-GFDL/MDTF-diagnostics/discussions/96
https://github.com/NOAA-GFDL/MDTF-diagnostics/discussions/96

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

git status

This will show files with a message that there are merge conflicts, or that a file has been added/deleted by
only one of the branches. Open the files in an editor, resolve the conflicts, then add edited (or remove deleted)
files to the staging area

git add file1
git add file2
...
git rm file3

5. Next, continue the rebase

git rebase --continue

The editor will open with the modified commit history. Simply save the changes and close the editor
(ESC+SHIFT+wq), and the rebase will continue. If the rebase stops with errors, repeat the merge conflict
resolution process, add/remove the files to staging area, type git rebase --continue, and proceed.

If you have not updated your branch in a long time, you’ll likely find that you have to keep fixing the same
conflicts over and over again (every time your commits collide with the commits on the main branch). This
is why we strongly advise POD developers to pull updates into their forks and rebase their branches onto the
develop branch frequently.

Note that if you want to stop the rebase at any time and revert to the original state of your branch, type

git rebase --abort

6. Once the rebase has completed, push your changes to the remote copy of your branch

git push -u origin feature/[POD name] --force

The --force option is necessary because rebasing modified the commit history.

7. Now that your branch is up-to-date, write your code!

1.9.10 Updating your feature branch bymerging in changes from the develop branch

1. Create a backup copy of your repo on your machine.

2. Update the local and remote develop branches on your fork as described in Updating your remote and
local develop branches (page 31).

3. Check out your feature branch, and merge the develop branch into your feature branch

git checkout feature/[POD name]
git merge develop

4. Resolve any conflicts that occur from the merge

5. Add the updated files to the staging area

33

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

git add file1
git add file2
...

6. Push the branch updates to your remote fork

git push -u origin feature/[POD name]

Reverting commits

If you want to revert to the commit(s) before you pulled in updates:

1. Find the commit hash(es) with the updates, in your git log

git log

or consult the commit log in the web interface

2. Revert each commit in order from newest to oldest

git revert <newer commit hash>
git revert <older commit hash>

3. Push the updates to the remote branch

git push origin feature/[POD name]

1.9.11 Set up SSHwith GitHub

• You have to generate an SSH key121 and add it122 to your GitHub account. This will save you from
having to re-enter your GitHub username and password every time you interact with their servers.

• When generating the SSH key, you’ll be asked to pick a passphrase (i.e., password).

• The following instructions assume you’ve generated an SSH key. If you’re using manual authentication
instead, replace the “git@github.com:” addresses in what follows with “https://github.com/”.

1.9.12 Some online git resources

If you are new to git and unfamiliar with many of the terminologies, Dangit, Git?!123 provides solutions in
plain English to many common mistakes people have made.

There are many comprehensive online git tutorials, such as:

• The official git tutorial124.
121 https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
122 https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account
123 https://dangitgit.com/
124 https://git-scm.com/docs/gittutorial

34

https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account
https://dangitgit.com/
https://git-scm.com/docs/gittutorial

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• A more verbose introduction125 to the ideas behind git and version control.

• A still more detailed walkthrough126, assuming no prior knowledge.

1.9.13 Git Tips and Tricks

• If you are unfamiliar with git and want to practice with the commands listed here, we recommend you
to create an additional feature branch just for this. Remember: your changes will not affect NOAA’s
repo until you’ve submitted a pull request through the GitHub webpage and accepted by the lead-team
programmer.

• GUI applications can be helpful when trying to resolve merge conflicts.Git packages for IDEs such as
VSCode and Eclipse often include tools for merge conflict resolution. You can also install free versions
of merge-conflict tools like P4merge127 and Sublime merge128.

• If you encounter problems during practice, you can first try looking for plain English instructions to
fix the situation at Dangit, Git?!129.

• A useful command is git status to remind you what branch you’re on and changes you’ve made
(but have not committed yet).

• git branch -a lists all branches with * indicating the branch you’re on.

• Push your changes to your remote fork often (at least daily) even if your changes aren’t “clean”, or
you are in the middle of a task. Your commit history does not need to look like a polished document,
and nobody is judging your coding prowess by your development branch. Frequently pushing to your
remote branch ensures that you have an easily accessible recent snapshot of your code in the event that
your system goes down, or you go crazy with rm -f *.

• A commit creates a snapshot of the code into the history in your local repo.

– The snapshot will exist until you intentionally delete it (after confirming a warning message).
You can always revert to a previous snapshot.

– Don’t commit code that you know is buggy or non-functional!

– You’ll be asked to enter a commit message. Good commit messages are key to making the
project’s history useful.

– Write in present tense describing what the commit, when applied, does to the code – not
what you did to the code.

– Messages should start with a brief, one-line summary, less than 80 characters. If this is too
short, you may want to consider entering your changes as multiple commits.

• Good commit messages are key to making the project’s history useful. To make this easier, instead of
using the -m flag, To provide further information, add a blank line after the summary and wrap text

125 https://www.atlassian.com/git/tutorials/what-is-version-control
126 http://swcarpentry.github.io/git-novice/
127 https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
128 https://www.sublimemerge.com/
129 https://dangitgit.com/

35

https://www.atlassian.com/git/tutorials/what-is-version-control
http://swcarpentry.github.io/git-novice/
https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
https://www.sublimemerge.com/
https://dangitgit.com/

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

to 72 columns if your editor supports it (this makes things display nicer on some tools). Here’s an
example130.

• To configure git to launch your text editor of choice: git config --global core.editor
"<command string to launch your editor>".

• To set your email: git config --global user.email "myemail@somedomain.com" You can
use the masked email github provides if you don’t want your work email included in the commit
log message. The masked email address is located in the Primary email address section under Set-
tings>emails.

• When the feature branch is no longer needed, delete the branch locally with git branch -d feature/<my_feature_name>.
If you pushed the feature branch to your fork, you can delete it remotely with git push
--delete origin feature/<my_feature_name>. - Remember that branches in git are just
pointers to a particular commit, so by deleting a branch you don’t lose any history.

• If you want to let others work on your feature, push its branch to your GitHub fork with git push -u
origin feature/<my_feature_name>.

• For additional ways to undo changes in your branch, see How to undo (almost) anything with Git131.

130 https://github.com/NOAA-GFDL/MDTF-diagnostics/commit/225b29f30872b60621a5f1c55a9f75bbcf192e0b
131 https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/

36

https://github.com/NOAA-GFDL/MDTF-diagnostics/commit/225b29f30872b60621a5f1c55a9f75bbcf192e0b
https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/

CHAPTER

TWO

FRAMEWORKREFERENCE

2.1 Diagnostic settings file format

The settings file is how your diagnostic tells the framework what it needs to run, in terms of software and
model data.

Each diagnostic must contain a text file named settings.jsonc in the JSON132 format, with the addition
that any text to the right of // is treated as a comment and ignored (sometimes called the “JSONC” format).

2.1.1 Brief summary of JSON

We’ll briefly summarize subset of JSON syntax used in this configuration file. The file’s JSON expressions
are built up out of items, which may be either

1. a boolean, taking one of the values true or false (lower-case, with no quotes).

2. a number (integer or floating-point).

3. a case-sensitive string, which must be delimited by double quotes.

In addition, for the purposes of the configuration file we define

4. a “time duration”: this is a string specifying a time span, used e.g. to describe how frequently data is
sampled. It consists of an optional integer (if omitted, the integer is assumed to be 1) and a units string
which is one of hr, day, mon, yr or fx. fx is used where appropriate to denote time-independent data.
Common synonyms for these units are also recognized (e.g. monthly, month, months, mo for mon,
static for fx, etc.)

In addition, the string "any" may be used to signify that any value is acceptable.

5. a “CF unit”: this is a string describing the units of a physical quantity, following the syntax133 of the
UDUNITS2134 library. 1 should be used for dimensionless quantities.

Items are combined in compound expressions of two types:

6. arrays, which are one-dimensional ordered lists delimited with square brackets. Entries can be of any
type, e.g. [true, 1, "two"].

132 https://en.wikipedia.org/wiki/JSON#Data_types_and_syntax
133 https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
134 https://www.unidata.ucar.edu/software/udunits/udunits-current/doc/udunits/udunits2.html

37

https://en.wikipedia.org/wiki/JSON#Data_types_and_syntax
https://www.unidata.ucar.edu/software/udunits/udunits-2.0.4/udunits2lib.html#Syntax
https://www.unidata.ucar.edu/software/udunits/udunits-current/doc/udunits/udunits2.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

7. objects, which are un-ordered lists of key:value pairs separated by colons and delimited with curly
brackets. Keys must be strings and must all be unique within the object, while values may be any
expression, e.g. {"red": 0, "green": false, "blue": "bagels"}.

Compound expressions may be nested within each other to an arbitrary depth.

2.1.2 File organization

{
"settings" : {
<...properties describing the diagnostic..>

},
"data" : {
<...properties for all requested model data...>

},
"dimensions" : {
"my_first_dimension": {
<...properties describing this dimension...>

},
"my_second_dimension": {
<...properties describing this dimension...>

},
...

},
"varlist" : {
"my_first_variable": {
<...properties describing this variable...>

},
"my_second_variable": {
<...properties describing this variable...>

},
...

}
}

At the top level, the settings file is an object (page 37) containing four required entries, described in detail
below.

• settings (page 39): properties that label the diagnostic and describe its runtime requirements.

• data (page 40): properties that apply to all the data your diagnostic is requesting.

• dimensions (page 42): properties that apply to the dimensions (in netCDF135 terminology) of the model
data. Each distinct dimension (coordinate axis) of the data being requested should be listed as a separate
entry here.

• varlist (page 45): properties that describe the individual variables your diagnostic operates on. Each
variable should be listed as a separate entry here.

135 https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html

38

https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

2.1.3 Settings section

This section is an object (page 37) containing properties that label the diagnostic and describe its runtime
requirements.

Example

"settings" : {
"long_name" : "Effect of X on Y diagnostic",
"driver" : "my_script.py",
"realm" : ["atmos", "ocean"],
"runtime_requirements": {
"python": ["numpy", "matplotlib", "netCDF4", "cartopy"],
"ncl": ["contributed", "gsn_code", "gsn_csm"]

},
"pod_env_vars" : {

// RES: Spatial Resolution (degree) for Obs Data (0.25, 0.50, 1.00).
"RES": "1.00"

}
}

Diagnostic description

long_name: String, required. Human-readable display name of your diagnostic. This is the text used to
describe your diagnostic on the top-level index.html page. It should be in sentence case (capitalize
first word and proper nouns only) and omit any punctuation at the end.

driver: String, required. Filename of the top-level driver script the framework should call to run your
diagnostic’s analysis.

realm: String or array (page 37) (list) of strings, required. One of the eight CMIP6 modeling realms (aerosol,
atmos, atmosChem, land, landIce, ocean, ocnBgchem, seaIce) describing what data your diagnos-
tic uses. If your diagnostic uses data from multiple realms, list them in an array (e.g. ["atmos",
"ocean"]). This information doesn’t affect how the framework fetches model data for your diagnos-
tic: it’s provided to give the user a shortcut to say, e.g., “run all the atmos diagnostics on this output.”

Diagnostic runtime

runtime_requirements: object (page 37), required. Programs your diagnostic needs to run (for exam-
ple, scripting language interpreters) and any third-party libraries needed in those languages. Each
executable should be listed in a separate key-value pair:

• The key is the name of the required executable, e.g. languages such as “python136” or “ncl137”
etc. but also any utilities such as “ncks138”, “cdo139”, etc.

136 https://www.python.org/
137 https://www.ncl.ucar.edu/
138 http://nco.sourceforge.net/
139 https://code.mpimet.mpg.de/projects/cdo

39

https://www.python.org/
https://www.ncl.ucar.edu/
http://nco.sourceforge.net/
https://code.mpimet.mpg.de/projects/cdo

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• The value corresponding to each key is an array (page 37) (list) of strings, which are names of
third-party libraries in that language that your diagnostic needs. You do not need to list standard
libraries or scripts that are provided in a standard installation of your language: eg, in python,
you need to list numpy140 but not math141. If no third-party libraries are needed, the value should
be an empty list.

In the future we plan to offer the capability to request specific versions142. For now, please communi-
cate your diagnostic’s version requirements to the MDTF organizers.

pod_env_vars: object (page 37), optional. Names and values of shell environment variables used by your
diagnostic, in addition to those supplied by the framework. The user can’t change these at runtime, but
this can be used to set site-specific installation settings for your diagnostic (eg, switching between low-
and high-resolution observational data depending on what the user has chosen to download). Note that
environment variable values must be provided as strings.

2.1.4 Data section

This section is an object (page 37) containing properties that apply to all the data your diagnostic is requesting.

Example

"data": {
"format": "netcdf4_classic",
"rename_dimensions": false,
"rename_variables": false,
"multi_file_ok": true,
"frequency": "3hr",
"min_frequency": "1hr",
"max_frequency": "6hr",
"min_duration": "5yr",
"max_duration": "any"

}

Example

format: String. Optional: assumed "any_netcdf_classic" if not specified. Specifies the format(s) of
model data your diagnostic is able to read. As of this writing, the framework only supports retrieval
of netCDF formats, so only the following values are allowed:

• "any_netcdf" includes all of:

– "any_netcdf3" includes all of:

∗ "netcdf3_classic" (CDF-1, files restricted to < 2 Gb)

∗ "netcdf3_64bit_offset" (CDF-2)
140 https://numpy.org/
141 https://docs.python.org/3/library/math.html
142 https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications

40

https://numpy.org/
https://docs.python.org/3/library/math.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

∗ "netcdf3_64bit_data" (CDF-5)

– "any_netcdf4" includes all of:

∗ "netcdf4_classic"

∗ "netcdf4"

• "any_netcdf_classic" includes all the above except "netcdf4" (classic data model only).

See the netCDF FAQ143 (under “Formats, Data Models, and Software Releases”) for information on
the distinctions. Any recent version of a supported language for diagnostics with netCDF support will
be able to read all of these. However, the extended features of the "netcdf4" data model are not
commonly used in practice and currently only supported at a beta level in NCL, which is why we’ve
chosen "any_netcdf_classic" as the default.

rename_dimensions: Boolean. Optional: assumed false if not specified. If set to true, the framework
will change the name of all dimensions (page 42) in the model data from the model’s native value
to the string specified in the name property for that dimension. If set to false, the diagnostic is
responsible for reading dimension names from the environment variable. See the environment variable
documentation (page 47) for details on how these names are provided.

rename_variables: Boolean. Optional: assumed false if not specified. If set to true, the framework
will change the name of all variables (page 45) in the model data from the model’s native value to the
string specified in the name property for that variable. If set to false, the diagnostic is responsible for
reading dimension names from the environment variable. See the environment variable documentation
(page 47) for details on how these names are provided.

multi_file_ok: Boolean. Optional: assumed false if not specified. If set to true, the diagnostic is
signalling that it’s able to accept data for a single variable that may be spread out in multiple files, to
be aggregated along the time dimension (e.g. through the use of xarray144.) Aggregation along the
time dimension is the only type of aggregation the diagnostic will need to consider.

If false, the framework will ensure all data for a single variable is presented as a single netCDF file.
This may lead to large file sizes if your diagnostic uses high-frequency data, in which case you should
consider setting a limit via max_duration.

min_duration, max_duration: Time durations (page 37). Optional: assumed "any" if not specified. Set
minimum and maximum length of the analysis period for which the diagnostic should be run: this
overrides any choices the user makes at runtime. Some example uses of this setting are:

• If your diagnostic uses low-frequency (e.g. seasonal) data, you may want to set min_duration
to ensure the sample size will be large enough for your results to be statistically meaningful.

• On the other hand, if your diagnostic uses high-frequency (e.g. hourly) data, you may want to set
max_duration to prevent the framework from attempting to download a large volume of data
for your diagnostic if the framework is called with a multi-decadal analysis period.

The following properties can optionally be set individually for each variable in the varlist section (page 45).
If so, they will override the global settings given here.

143 https://www.unidata.ucar.edu/software/netcdf/docs/faq.html
144 http://xarray.pydata.org/en/stable/generated/xarray.open_mfdataset.html

41

https://www.unidata.ucar.edu/software/netcdf/docs/faq.html
http://xarray.pydata.org/en/stable/generated/xarray.open_mfdataset.html

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

dimensions_ordered: Boolean. Optional: assumed false if not specified. If set to true, the frame-
work will ensure that the dimensions of each variable’s array are given in the same order as listed in
dimensions. If set to false, your diagnostic is responsible for handling arbitrary dimension orders:
e.g. it should not assume that 3D data will be presented as (time, lat, lon).

frequency, min_frequency, max_frequency: Time durations (page 37). Time frequency at which the
data is provided. Either frequency or the min/max pair, or both, is required:

• If only frequency is provided, the framework will attempt to obtain data at that frequency. If
that’s not available from the data source, your diagnostic will not run.

• If the min/max pair is provided, the diagnostic must be capable of using data at any frequency
within that range (inclusive). The diagnostic is responsible for determining the frequency from
the data file itself if this option is used.

• If all three properties are set, the framework will first attempt to find data at frequency. If that’s
not available, it will try data within the min/max range, so your code must be able to handle this
possibility.

2.1.5 Dimensions section

This section is an object (page 37) contains properties that apply to the dimensions of model data. “Di-
mensions” are meant in the sense of the netCDF data model145, and “coordinate dimensions” in the CF
conventions: informally, they are “coordinate axes” holding the values of independent variables that the
dependent variables are sampled at.

All dimensions (page 46) and scalar coordinates (page 46) referenced by variables in the varlist section must
have an entry in this section. If two variables reference the same dimension, they will be sampled on the same
set of spatial values. Different time values are specified with the frequency attribute on varlist entries.

Note that the framework currently only supports the (simplest and most common) “independent axes” case
of the CF conventions146. In particular, the framework only deals with data on lat-lon grids.

Example

"dimensions": {
"lat": {

"standard_name": "latitude",
"units": "degrees_N",
"range": [-90, 90],
"need_bounds": false

},
"lon": {

"standard_name": "longitude",
"units": "degrees_E",
"range": [-180, 180],

(continues on next page)

145 https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html
146 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#_independent_latitude_longitude_

vertical_and_time_axes

42

https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcDims.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#_independent_latitude_longitude_vertical_and_time_axes

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

(continued from previous page)
"need_bounds": false

},
"plev": {

"standard_name": "air_pressure",
"units": "hPa",
"positive": "down",
"need_bounds": false

},
"time": {

"standard_name": "time",
"units": "days",
"calendar": "noleap",
"need_bounds": false

}
}

Latitude and Longitude

standard_name: Required, string. Must be "latitude" and "longitude", respectively.

units: Optional, a CFunit (page 37). Units the diagnostic expects the dimension to be in. Currently the
framework only supports decimal degrees_north and degrees_east, respectively.

range: Array (page 37) (list) of two numbers. Optional. If given, specifies the range of values the diagnostic
expects this dimension to take. For example, "range": [-180, 180] for longitude will have the
first entry of the longitude variable in each data file be near -180 degrees (not exactly -180, because
dimension values are cell midpoints), and the last entry near +180 degrees.

need_bounds: Boolean. Optional: assumed false if not specified. If true, the framework will ensure
that bounds are supplied for this dimension, in addition to its midpoint values, following the CF con-
ventions147: the bounds attribute of this dimension will be set to the name of another netCDF variable
containing the bounds information.

axis: String, optional. Assumed to be Y and X respectively if omitted, or if standard_name is "latitude"
or "longitude". Included here to enable future support for non-lat-lon horizontal coordinates.

Time

standard_name: Required. Must be "time".

units: String. Optional, defaults to “day”. Units the diagnostic expects the dimension to be in. Currently
the diagnostic only supports time axes of the form “<units> since <reference data>”, and the value
given here is interpreted in this sense (e.g. settings this to “day” would accommodate a dimension of
the form “[decimal] days since 1850-01-01”.)

calendar: String, Optional. One of the CF convention calendars148 or the string "any". Defaults to “any”
if not given. Calendar convention used by your diagnostic. Only affects the number of days per month.

147 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
148 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar

43

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

need_bounds: Boolean. Optional: assumed false if not specified. If true, the framework will ensure
that bounds are supplied for this dimension, in addition to its midpoint values, following the CF con-
ventions149: the bounds attribute of this dimension will be set to the name of another netCDF variable
containing the bounds information.

axis: String, optional. Assumed to be T if omitted or provided.

Z axis (height/depth, pressure, …)

standard_name: Required, string. Standard name150 of the variable as defined by the CF conventions151,
or a commonly used synonym as employed in the CMIP6 MIP tables.

units: Optional, a CFunit (page 37). Units the diagnostic expects the dimension to be in. If not provided,
the framework will assume CF convention canonical units152.

positive: String, required. Must be "up" or "down", according to the CF conventions153. A pressure axis
is always "down" (increasing values are closer to the center of the earth), but this is not set automati-
cally.

need_bounds: Boolean. Optional: assumed false if not specified. If true, the framework will ensure
that bounds are supplied for this dimension, in addition to its midpoint values, following the CF con-
ventions154: the bounds attribute of this dimension will be set to the name of another netCDF variable
containing the bounds information.

axis: String, optional. Assumed to be Z if omitted or provided.

Other dimensions (wavelength,…)

standard_name: Required, string. Standard name155 of the variable as defined by the CF conventions156,
or a commonly used synonym as employed in the CMIP6 MIP tables.

units: Optional, a CFunit (page 37). Units the diagnostic expects the dimension to be in. If not provided,
the framework will assume CF convention canonical units157.

need_bounds: Boolean. Optional: assumed false if not specified. If true, the framework will ensure
that bounds are supplied for this dimension, in addition to its midpoint values, following the CF con-
ventions158: the bounds attribute of this dimension will be set to the name of another netCDF variable
containing the bounds information.

149 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
150 http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
151 http://cfconventions.org/
152 http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
153 http://cfconventions.org/faq.html#vertical_coords_positive_attribute
154 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
155 http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
156 http://cfconventions.org/
157 http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
158 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries

44

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
http://cfconventions.org/
http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
http://cfconventions.org/faq.html#vertical_coords_positive_attribute
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
http://cfconventions.org/
http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-boundaries

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

2.1.6 Varlist section

This section is an object (page 37) contains properties that apply to the model variables your diagnostic needs
for its analysis. “Dimensions” are meant in the sense of the netCDF data model159: informally, they are the
“dependent variables” whose values are being computed as a function of the values stored in the dimensions.

Note that this includes “auxiliary coordinates” in the CF conventions terminology and similar ancillary in-
formation. If your diagnostic needs, eg, cell areas or volumes, orography data, etc., each piece of data should
be listed as a separate entry here, even if their use is conventionally implied by the use of other variables.

Each entry corresponds to a distinct data file (or set of files, if multi_file_ok is true) downloaded by
the framework. If your framework needs the same physical quantity sampled with different properties (e.g.
slices of a variable at multiple pressure levels), specify them as multiple entries.

Varlist entry example

"u500": {
"standard_name": "eastward_wind",
"path_variable": "U500_FILE",
"units": "m s-1",
"dimensions" : ["time", "lat", "lon"],
"dimensions_ordered": true,
"scalar_coordinates": {"pressure": 500},
"requirement": "optional",
"alternates": ["another_variable_name", "a_third_variable_name"]

}

Varlist entry properties

The key in a varlist key-value pair is the name your diagnostic uses to refer to this variable (and must be
unique). The value of the key-value pair is an object (page 37) containing properties specific to that variable:

standard_name: String, required. Standard name160 of the variable as defined by the CF conventions161,
or a commonly used synonym as employed in the CMIP6 MIP tables (e.g. “ua” instead of “east-
ward_wind”).

path_variable: String, optional but recommended. Name of the shell environment variable the framework
will set with the location of this data. This is the only currently supported method for communicating
the location of model data to your diagnostic. If omitted, set to <key>_FILE, where <key> is the key
to the varlist entry (case-sensitive). See the environment variable documentation (page 47) for details.

• If multi_file_ok is false, <path_variable> will be set to the absolute path to the netcdf
file containing this variable’s data.

• If multi_file_ok is true, <path_variable> will be a single path or a colon-separated list of
paths to the files containing this data. Files will be listed in order of the dates of their contents.

159 https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcVars.html
160 http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
161 http://cfconventions.org/

45

https://www.unidata.ucar.edu/software/netcdf/workshops/2010/datamodels/NcVars.html
http://cfconventions.org/Data/cf-standard-names/72/build/cf-standard-name-table.html
http://cfconventions.org/

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• If the variable is listed as "optional" or "alternate" or has alternate variables listed,
<path_variable> will be defined but set to the empty string if the framework couldn’t obtain
this data from the data source. Your diagnostic should test for this possibility. (If the variable is
required but the framework couldn’t obtain data, an error will be logged and your diagnostic will
not run).

use_exact_name: Boolean. Optional: assumed false if not specified. If true, the framework will ignore
the model’s naming conventions and only look for a variable with a name matching the key of this entry,
regardless of what model or data source the framework is using. The only use case for this setting is
to give diagnostics the ability to request data that falls outside the CF conventions: in general, you
should rely on the framework to translate CF standard names to the native field names of the model
being analyzed.

units: Optional, a CFunit (page 37). Units the diagnostic expects the variable to be in. If not provided, the
framework will assume CF convention canonical units162.

dimensions: Required. List of strings, which must be selected the keys of entries in the dimensions
(page 42) section. Dimensions of the array containing the variable’s data. Note that the framework
will not reorder dimensions (transpose) unless dimensions_ordered is additionally set to true.

dimensions_ordered: Boolean. Optional: assumed false if not specified. If true, the framework will
ensure that the dimensions of this variable’s array are given in the same order as listed in dimensions.
If set to false, your diagnostic is responsible for handling arbitrary dimension orders: e.g. it should
not assume that 3D data will be presented as (time, lat, lon). If given here, overrides the values set
globally in the data section (see description (page 41) there).

scalar_coordinates: object (page 37), optional. This implements what the CF conventions refer to as
“scalar coordinates163”, with the use case here being the ability to request slices of higher-dimensional
data. For example, the snippet at the beginning of this section shows how to request the u component
of wind velocity on a 500 mb pressure level.

• keys are the key (name) of an entry in the dimensions (page 42) section.

• values are a single number (integer or floating-point) corresponding to the value of the slice to
extract. Units of this number are taken to be the units property of the dimension named as the
key.

In order to request multiple slices (e.g. wind velocity on multiple pressure levels, with each level saved
to a different file), create one varlist entry per slice.

frequency, min_frequency, max_frequency: Time durations (page 37). Optional. Time frequency at
which the variable’s data is provided. If given here, overrides the values set globally in the data section
(see description (page 42) there).

requirement: String. Optional: assumed "required" if not specified. One of three values:

• "required": variable is necessary for the diagnostic’s calculations. If the data source doesn’t
provide the variable (at the requested frequency, etc., for the user-specified analysis period) the
framework will not run the diagnostic, but will instead log an error message explaining that the
lack of this data was at fault.

162 http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
163 http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#scalar-coordinate-variables

46

http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#scalar-coordinate-variables

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• "optional": variable will be supplied to the diagnostic if provided by the data source. If not
available, the diagnostic will still run, and the path_variable for this variable will be set to the
empty string. The diagnostic is responsible for testing the environment variable for the existence
of all optional variables.

• "alternate": variable is specified as an alternate source of data for some other variable (see
next property). The framework will only query the data source for this variable if it’s unable to
obtain one of the other variables that list it as an alternate.

alternates: Array (page 37) (list) of strings, which must be keys (names) of other variables. Optional: if
provided, specifies an alternative method for obtaining needed data if this variable isn’t provided by
the data source.

• If the data source provides this variable (at the requested frequency, etc., for the user-specified
analysis period), this property is ignored.

• If this variable isn’t available as requested, the framework will query the data source for all of the
variables listed in this property. If all of the alternate variables are available, the diagnostic will
be run; if any are missing it will be skipped. Note that, as currently implemented, only one set
of alternates may be given (no “plan B”, “plan C”, etc.)

2.2 MDTF Environment variables

This page describes the environment variables that the framework will set for your diagnostic when it’s run.

2.2.1 Overview

The MDTF framework can be viewed as a “wrapper” for your code that handles data fetching and munging.
Your code communicates with this wrapper in two ways:

• The settings file (page 14) is where your code talks to the framework: when you write your code, you
document what model data your code uses (not covered on this page, follow the link for details).

• When your code is run, the framework talks to it by setting shell environment variables164 containing
paths to the data files and other information specific to the run. The framework communicates all
runtime information this way: this is in order to 1) pass information in a language-independent way,
and 2) to make writing diagnostics easier (you don’t need to parse command-line settings).

Note that environment variables are always strings. Your script will need to cast non-text data to the ap-
propriate type (e.g. the bounds of the analysis time period, FIRSTYR, LASTYR, will need to be converted to
integers.)

Also note that names of environment variables are case-sensitive.
164 https://en.wikipedia.org/wiki/Environment_variable

47

https://en.wikipedia.org/wiki/Environment_variable

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

2.2.2 Paths

OBS_DATA: Path to the top-level directory containing any observational or reference data you’ve provided as
the author of your diagnostic. Any data your diagnostic uses that doesn’t come from the model being
analyzed should go here (i.e., you supply it to the framework maintainers, they host it, and the user
downloads it when they install the framework). The framework will ensure this is copied to a local
filesystem when your diagnostic is run, but this directory should be treated as read-only.

POD_HOME: Path to the top-level directory containing your diagnostic’s source code. This will be of the form
.../MDTF-diagnostics/diagnostics/<your POD's name>. This can be used to call sub-scripts
from your diagnostic’s driver script. This directory should be treated as read-only.

WK_DIR: Path to your diagnostic’s working directory, which is where all output data should be written (as
well as any temporary files).

The framework creates the following subdirectories within this directory:

• $WK_DIR/obs/PS and $WK_DIR/model/PS: All output plots produced by your diagnostic should
be written to one of these two directories. Only files in these locations will be converted to
bitmaps for HTML output.

• $WK_DIR/obs/netCDF and $WK_DIR/model/netCDF: Any output data files your diagnostic
wants to make available to the user should be saved to one of these two directories.

2.2.3 Model run information

CASENAME: User-provided label describing the run of model data being analyzed.

FIRSTYR, LASTYR: Four-digit years describing the analysis period.

2.2.4 Locations of model data files

These are set depending on the data your diagnostic requests in its settings file (page 14). Refer to the
examples below if you’re unfamiliar with how that file is organized.

Each variable listed in the varlist section of the settings file must specify a path_variable property. The
value you enter there will be used as the name of an environment variable, and the framework will set the
value of that environment variable to the absolute path to the file containing data for that variable.

From a diagnostic writer’s point of view, this means all you need to do here is replace paths to input data
that are hard-coded or passed from the command line with calls to read the value of the corresponding
environment variable.

• If the framework was not able to obtain the variable from the data source (at the requested frequency,
etc., for the user-specified analysis period), this variable will be set equal to the empty string. Your
diagnostic is responsible for testing for this possibility for all variables that are listed as optional or
have alternates listed (if a required variable without alternates isn’t found, your diagnostic won’t be
run.)

48

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

• If multi_file_ok is set to true in the settings file, this environment variable may be a list of paths to
multiple files in chronological order, separated by colons. For example, /dir/precip_1980_1989.
nc:/dir/precip_1990_1999.nc:/dir/precip_2000_2009.nc for an analysis period of 1980-
2009.

2.2.5 Names of variables and dimensions

These are set depending on the data your diagnostic requests in its settings file (page 14). Refer to the
examples below if you’re unfamiliar with how that file is organized.

For each dimension: If <key> is the name of the key labeling the key:value entry for this dimension, the
framework will set an environment variable named <key>_coord equal to the name that dimension
has in the data files it’s providing.

• If rename_dimensions is set to true in the settings file, this will always be equal to <key>. If
rename_dimensions is false, this will be whatever the model or data source’s native name for
this dimension is, and your diagnostic should read the name from this variable. Your diagnostic
should only use hard-coded names for dimensions if rename_dimensions is set to true in its
settings file (page 37).

If the data source has provided (one-dimensional) bounds for this dimension, the name of the netCDF
variable containing those bounds will be set in an environment variable named <key>_bnds. If bounds
are not provided, this will be set to the empty string. Note that multidimensional boundaries (e.g. for
horizontal cells) should be listed as separate entries in the varlist section.

For each variable: If <key> be the name of the key labeling the key:value entry for this variable in the varlist
section, the framework will set an environment variable named <key>_var equal to the name that
variable has in the data files it’s providing.

• If rename_variables is set to true in the settings file, this will always be equal to <key>. If
rename_variables is false, this will be whatever the model or data source’s native name for
this variable is, and your diagnostic should read the name from this variable. Your diagnostic
should only use hard-coded names for variables if rename_variables is set to true in its
settings file (page 37).

2.2.6 Simple example

We only give the relevant parts of the settings file (page 37) below.

"data": {
"rename_dimensions": false,
"rename_variables": false,
"multi_file_ok": false,
...

},
"dimensions": {
"lat": {
"standard_name": "latitude",
...

(continues on next page)

49

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

(continued from previous page)
},
"lon": {
"standard_name": "longitude",
...

},
"time": {
"standard_name": "time",
...

}
},
"varlist": {
"pr": {
"standard_name": "precipitation_flux",
"path_variable": "PR_FILE"

}
}

The framework will set the following environment variables:

1. lat_coord: Name of the latitude dimension in the model’s native format (because
rename_dimensions is false).

2. lon_coord: Name of the longitude dimension in the model’s native format (because
rename_dimensions is false).

3. time_coord: Name of the time dimension in the model’s native format (because
rename_dimensions is false).

4. pr_var: Name of the precipitation variable in the model’s native format (because rename_variables
is false).

5. PR_FILE: Absolute path to the file containing pr data, e.g. /dir/precip.nc.

2.2.7 More complex example

Let’s elaborate on the previous example, and assume that the diagnostic is being called on model that provides
precipitation_flux but not convective_precipitation_flux.

"data": {
"rename_dimensions": true,
"rename_variables": false,
"multi_file_ok": true,
...

},
"dimensions": {
"lat": {
"standard_name": "latitude",
...

},
"lon": {
"standard_name": "longitude",

(continues on next page)

50

MDTFDeveloper's Walkthrough, Release 3.0 beta 2

(continued from previous page)
...

},
"time": {
"standard_name": "time",
...

}
},
"varlist": {
"prc": {
"standard_name": "convective_precipitation_flux",
"path_variable": "PRC_FILE",
"alternates": ["pr"]

},
"pr": {
"standard_name": "precipitation_flux",
"path_variable": "PR_FILE"

}
}

Comparing this with the previous example:

• lat_coord, lon_coord and time_coord will be set to “lat”, “lon” and “time”, respectively, because
rename_dimensions is true. The framework will have renamed these dimensions to have these names
in all data files provided to the diagnostic.

• prc_var and pr_var will be set to the model’s native names for these variables. Names for all vari-
ables are always set, regardless of which variables are available from the data source.

• In this example, PRC_FILE will be set to '', the empty string, because it wasn’t found.

• PR_FILE will be set to /dir/precip_1980_1989.nc:/dir/precip_1990_1999.nc:/dir/
precip_2000_2009.nc, because multi_file_ok was set to true.

51

CHAPTER

THREE

ACKNOWLEDGEMENTS

Development of this code framework for process-oriented diagnostics was supported by the National Oceanic
and Atmospheric Administration165 (NOAA) Climate Program Office Modeling, Analysis, Predictions and
Projections166 (MAPP) Program (grant # NA18OAR4310280). Additional support was provided by Univer-
sity of California Los Angeles167, the Geophysical Fluid Dynamics Laboratory168, the National Center for
Atmospheric Research169, Colorado State University170, Lawrence Livermore National Laboratory171 and
the US Department of Energy172.

Many of the process-oriented diagnostics modules (PODs) were contributed by members of the NOAA Model
Diagnostics Task Force173 under MAPP support. Statements, findings or recommendations in these docu-
ments do not necessarily reflect the views of NOAA or the US Department of Commerce.

3.1 Disclaimer

This repository is a scientific product and is not an official communication of the National Oceanic and At-
mospheric Administration, or the United States Department of Commerce. All NOAA GitHub project code
is provided on an ‘as is’ basis and the user assumes responsibility for its use. Any claims against the De-
partment of Commerce or Department of Commerce bureaus stemming from the use of this GitHub project
will be governed by all applicable Federal law. Any reference to specific commercial products, processes,
or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their en-
dorsement, recommendation or favoring by the Department of Commerce. The Department of Commerce
seal and logo, or the seal and logo of a DOC bureau, shall not be used in any manner to imply endorsement
of any commercial product or activity by DOC or the United States Government.

165 https://www.noaa.gov/
166 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
167 https://www.ucla.edu/
168 https://www.gfdl.noaa.gov/
169 https://ncar.ucar.edu/
170 https://www.colostate.edu/
171 https://www.llnl.gov/
172 https://www.energy.gov/
173 https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/

Model-Diagnostics-Task-Force

52

https://www.noaa.gov/
https://www.noaa.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP
https://www.ucla.edu/
https://www.ucla.edu/
https://www.gfdl.noaa.gov/
https://ncar.ucar.edu/
https://ncar.ucar.edu/
https://www.colostate.edu/
https://www.llnl.gov/
https://www.energy.gov/
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force
https://cpo.noaa.gov/Meet-the-Divisions/Earth-System-Science-and-Modeling/MAPP/MAPP-Task-Forces/Model-Diagnostics-Task-Force

	Developer information
	Introduction for POD developers
	Migration from framework v2.0
	POD development checklist
	Developer quickstart guide
	POD development guidelines
	POD settings file summary
	Walkthrough of framework operation
	POD coding best practices
	Git-based development workflow

	Framework reference
	Diagnostic settings file format
	MDTF Environment variables

	Acknowledgements
	Disclaimer

